Article contents
Fiber-optics Low-coherence Integrated Metrology for In-Situ Non-contact Characterization of Wafer Curvature for Wafers Having Non-uniform Substrate and Thin Film Thickness
Published online by Cambridge University Press: 01 February 2011
Abstract
Abstract. We propose novel stress metrology technique for measurement of local values stress tensor components in the coated wafers. New metrology is based on fiber-optic low coherence interferometry and can be applied to study stress not only in semicondiuctor wafers but in wide variety applications spanning from semiconductor to construction industry where measurements of plates covered by thin film encountered in flat panel displayes, solar cells, modern windows.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2005
References
1.
Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., Hee, M. R., Flotte, T., Gregory, K., Puliafito, C. A., Fujimoto, J. G., “Optical coherence tomography,” Science
254, 1178–1181 (1991).Google Scholar
2.
Walecki, W., “Non-Contact Fast Wafer Metrology for Ultra-Thin Patterned Wafers Mounted on Grinding Dicing Tapes”, SEMI® Technology Symposium: International Electronics Manufacturing Technology IEMT), San Jose, July 16, 2004.Google Scholar
3.
Walecki, W.J., Lu, R., Lee, J., Watman, M., Lau, S.H., and Koo, A., “Novel Non-contact Wafer Mapping Metrologies for Thin and Ultrathin Chip Manufacturing Applications”, 3rd International Workshop on Semiconductor Devices – Manufacturing and Applications, Munich, Germany, November 25, 2002.Google Scholar
4.
Walecki, W. J., Souchkov, V., Lai, K., Van, P., Santos, M., Pravdivtsev, A., Lau, S. H., and Koo, A., “Novel Noncontact Thickness Metrology for Partially Transparent and Nontransparent Wafers for Backend Semiconductor Manufacturing” in Progress in Compound Semiconductor Materials IV—Electronic and Optoelectronic Applications, edited by Brown, G.J., Manasreh, M.O., Gmachl, C., Biefeld, R.M., Unterrainer, K. (Mater. Res. Soc. Symp. Proc. 829, Warrendale, PA, 2004), B9.31.Google Scholar
5.
Walecki, W. J., Lai, K., Souchkov, V., Van, P., Lau, SH, and Koo, A., “Novel noncontact thickness metrology for backend manufacturing of wide bandgap light emitting devices”, phys. stat. sol. (c)
2, No. 3, 984–989 (2005).Google Scholar
6.
Walecki, W., Wei, F., Van, P., Lai, K., Lee, T., Lau, SH, and Koo, A., “Novel Low Coherence Metrology for Nondestructive Characterization of High Aspect Ratio Micro-fabricated and Micro-machined Structures” Reliability, Testing and Characterization MEMS/MOEMS III, edited by Tanner, D. M. and Ramesham, R., Proc. SPIE 5343, 55 (2003).Google Scholar
7.
Walecki, , Low Coherence Interferometry Based Metrologies for MEMS Manufacturing, SEMI Technology Symposium: Innovations in Semiconductor Manufacturing (STS: ISM), July 13, San Francisco, 2004.Google Scholar
8.
Walecki, W., Wei, F., Van, P., Lai, K., Lee, T., Souchkov, V., Lau, S.H., and Koo, A. “Low Coherence Interferometric Metrology for Ultra-Thin MEMs Structures”, in Nanoengineered Assemblies and Advanced Micro/Nanosystems, edited by Taylor, David P., Liu, Jun, McIlroy, David, Merhari, Lhadi, Pendry, J.B., Borenstein, Jeffrey T., Grodzinski, Piotr, Lee, Luke P., and Wang, Zhong Lin (Mater. Res. Soc. Symp. Proc. 820, Warrendale, PA, 2004), 08.8.Google Scholar
9.
Walecki, Wojciech J., Wei, Frank, Van, Phuc, Lai, Kevin, Lee, Tim, Lau, SH, and Koo, Ann, “Novel Low Coherence Metrology for Nondestructive Characterization of High Aspect Ratio Micro-fabricated and Micro-machined Structures”, Reliability, Testing, and Characterisation of MEMS/MOEMS III, edited by Tanner, Danelle M., Ramesham, Rejeshuni, Proceedings of SPIE Vol. 5343 p. 55–62 (SPIE, Bellingham, WA, 2004).Google Scholar
10.
Walecki, W. J., Souchkov, V., Lai, K., Wong, T., Azfar, T., Tan, Y. T., Van, P., Lau, S. H., and Koo, A., “Low-coherence interferometric absolute distance gauge for study MEMs structures” in Reliability, Testing and Characterization MEMS/MOEMS IV, edited by Tanner, D. M. and Ramesham, R., Proc. SPIE 5716, 23 (2005).Google Scholar
11.
Rosakis, A. J., Singh, R., Kolawa, E. and Moore, N. Jr, “Coherent Gradient Sensing Method and System for Measuring Surface Curvatures”, Issued 2000, US Patent # 6,031,611 2.Google Scholar
13.
Landau, L. D. and Lifschitz, E. M., “Theory of Elasticity” (Pergamon, New York
1970).Google Scholar
16.
Born, M. and Wolf, E. “The Diffraction Theory of Aberrations.” Ch. 9 in Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, 6th ed. New York: Pergamon Press, pp. 459–490, 1989
Google Scholar
17.
Weisstein, Eric W.. “Zernike Polynomial.” From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/ZernikePolynomial.htmlGoogle Scholar
- 2
- Cited by