Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T02:19:38.107Z Has data issue: false hasContentIssue false

Field-Assembled Polymer Composites

Published online by Cambridge University Press:  13 March 2014

James E. Martin*
Affiliation:
Sandia National Laboratories Albuquerque, New Mexico 87185
Get access

Abstract

In this paper we show that a wide variety of composite structures can be obtained from structuring with multiaxial fields. The properties of these composites are highly responsive to field structuring and so significant increases in a variety of properties can be obtained. These composites have application as high-strain actuators, strain and temperature sensors, chemical sensors, and as thermal interface materials. We discuss these issues and provide a general summary of the research we have done in this area.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFRENCES

Martin, J. E., Theory of strong intrinsic mixing of particle suspensions in vortex magnetic fields, Phys. Rev. E 79 011503011514 (2009).CrossRefGoogle Scholar
Martin, J. E., Shea-Rohwer, L., Solis, K. J., Strong intrinsic magnetic mixing in vortex magnetic fields, Phys. Rev. E 80 016312016317 (2009).CrossRefGoogle Scholar
Solis, K. J., Bell, R. C., Martin, J. E., Vortex magnetic field mixing with anisometric particles, J. Appl. Phys. 107 114911–1 to 114911-4 (2010).CrossRefGoogle Scholar
Solis, K. J., Martin, J. E., Isothermal magnetic advection: Creating functional fluid flows for heat and mass transfer, Appl. Phys. Lett. 97, 034101 (2010).Google Scholar
Solis, K. J., Martin, J. E., Stimulation of vigorous rotational flows and novel flow patterns using triaxial magnetic fields, Soft Matter 8, 11989–94 (2012).Google Scholar
Solis, K. J., Martin, J. E., Controlling the lattice spacing in isothermal magnetic advection to enable tunable heat and mass transfer, J. Appl. Phys. 112, 049912–7 (2012).Google Scholar
Solis, K. J., Martin, J. E., Multiaxial fields drive the thermal conductivity switching of a magneto-responsive platelet suspension, Soft Matter 9, 91829188 (2013).Google Scholar
Chen, T. J., Zitter, R. N., Tao, R., Laser diffraction determination of the crystalline structure of an electrorheological fluid, Phys. Rev. Lett. 68, 25552558 (1992).CrossRefGoogle Scholar
Martin, J. E., Anderson, R. A. and Tigges, C. P., Simulation of the athermal coarsening of composites structured by a uniaxial field, J. Chem. Phys. 108 37653787 (1998).CrossRefGoogle Scholar
Batchelor, G. K., Transport properties of two-phase materials with random structure, Ann. Rev. Fluid Mech. 6 227-255 (1974).CrossRefGoogle Scholar
Garboczi, E. J., Douglas, J. K., The intrinsic viscosity and the polarizability of particles having a wide variety of shapes, Advances in Chemical Physics 91, 85153 (1995).Google Scholar
Martin, J. E., Anderson, R. A. and Tigges, C. P., Simulation of the athermal coarsening of composites structured by a biaxial field, J. Chem. Phys. 108 78877900 (1998).CrossRefGoogle Scholar
Martin, J. E., Anderson, R. A., Tigges, C. P., Thermal coarsening of uniaxial and biaxial field-structured composites, J. Chem. Phys. 110 48544866 (1999).CrossRefGoogle Scholar
Martin, J. E., Anderson, R. A., and Williamson, R. L., Generating strange magnetic and dielectric interactions: Classical molecules and particle foams, J. Chem. Phys. 118 1557-1570 (2003); J. E. Martin, R. A. Anderson, and R. L. Williamson, Generating strange interactions in particle suspensions, Composites Science and Technology 63 1097–1103(2003).Google Scholar
Martin, J. E., Venturini, E., Gulley, G., Williamson, J., Using triaxial magnetic fields to create high susceptibility particle composites, Phys. Rev. E 69 21508-1 to 15 (2004). J. E. Martin, Using triaxial magnetic fields to create optimal particle composites. Composites Part A 36 545–8(2005).Google Scholar
Martin, J. E., Venturini, E., Odinek, J., and Anderson, R. A., Anisotropic magnetism in field-structured composites, Phys. Rev. E. 61 28182830 (2000).CrossRefGoogle Scholar
Martin, J. E., Venturini, E., and Huber, D. L., Giant magnetic susceptibility enhancement in field-structured nanocomposites, Journal of Magnetism and Magnetic Materials 320 22212227 (2008).CrossRefGoogle Scholar
Martin, J. E. and Gulley, G., Field-structured composites for efficient, directed heat transfer, J. Appl. Phys. 106 084301084307 (2009); also in Virtual Journal of Nanoscale Science & Technology 20 [19] (2009).CrossRefGoogle Scholar
Solis, K. J., Martin, J. E., Field-structured magnetic platelets as a route to improved thermal interface materials, J. Appl. Phys. 111, 054306–10 (2012).Google Scholar
Martin, J. E., Solis, K. J., Rademacher, D., Raksha, V., Field-structured, multilayered platelets enable high-performance, dielectric thermal composites, J. Appl. Phys. 112, 073507–10 (2012).Google Scholar
Martin, J. E. and Anderson, R. A., Electrostriction in field-structured composites: Basis for a fast artificial muscle? J. Chem. Phys. 111 42734280 (1999).CrossRefGoogle Scholar
Martin, J. E., Anderson, R. A., Read, D. H., Gulley, G., Magnetostriction of field-structured magnetoelastomers, Phys. Rev. E 74 (5) 051607051624 (2006).CrossRefGoogle Scholar
Martin, J. E., Anderson, R. A., Odinek, J., Adolf, D. and Williamson, J., Controlling percolation in field-structured particle composites: Observations of giant thermoresistance, piezoresistance, and chemiresistance, Phys. Rev. B 67 94207–1 to 11 (2003).Google Scholar
Read, D. H. and Martin, J. E., Field-structured chemiresistors, Advanced Functional Materials, 20 (10), 15771584 (2010).CrossRefGoogle Scholar
Read, D. H. and Martin, J. E., Master transduction curve for field-structured chemiresistor calibration, Anal. Chem. 82, pp. 5373–9 (2010).Google Scholar
Read, D. H. and Martin, J. E., Strain-tunable chemiresistor, Anal. Chem. 82(5), pp 21502154 (2010).CrossRefGoogle Scholar
Read, D. H. and Martin, J. E. Analyte discrimination from chemiresistor response kinetics, Anal. Chem. 82, pp. 6969–75 (2010).Google Scholar