Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T13:39:55.396Z Has data issue: false hasContentIssue false

First Attempt to Develop A Material Model Describing Single Crystal Creep Behavior

Published online by Cambridge University Press:  10 February 2011

Holger Brehmn
Affiliation:
Technisches Institut, Metallische Werkstoffe, Friedrich- Schiller-Universität Jena, Löbdergraben 32, D-07743 Jena, Germany
Uwe Glatzel
Affiliation:
Technisches Institut, Metallische Werkstoffe, Friedrich- Schiller-Universität Jena, Löbdergraben 32, D-07743 Jena, Germany
Get access

Abstract

A material model is proposed which describes single crystal creep behavior by evolution equations for dislocation densities on individual slip systems. An interaction matrix determines the influence from one glide system to the other. Assuming a face centered cubic crystal, allowing deformation on octahedral glide planes and cube glide planes with a Burgers vector of the type a/2 <110>, nine independent parameters of the interaction matrix can be distinguished. A parameter check of the nine independent parameters has been carried out, showing the influence of parameters on specific orientations of the load axis. If one assumes dislocation interaction of a glide system only with itself a smooth behavior is predicted with a maximum creep rate for [001] orientation, followed by [011] and [111]. If a strong interaction is assumed, the orientation dependent creep behavior is not at all smooth, instead it shows a sharp drop in creep rates mainly in symmetric positions of the standard orientation triangle. The orientations with highest creep rates are in this case those which favor single glide. Highly symmetric orientations, such as [001], [011] and [111] have strongly decreased stationary creep rates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schmid, E. and Boas, W. (1935) Kristallplastizität; Springer, Berlin Google Scholar
2. Burke, E.C. and Hibbard, W.R. Jr (1952), Trans. AIME 194, 295 Google Scholar
3. Chaboche, J.-L. (1977), Bulletin de L'Academie des Siences, Series des Techniques 18, 33 Google Scholar
4. Cailletaud, C. (1992), Int. J. Plasticity 8, 55 Google Scholar
5. Zhou, Y., Neale, K. W. and Tóth, L. S. (1993), Int. J. Plasticity 9, 961978 Google Scholar
6. Franciosi, P. (1983) Acta met. 31, 13311342 Google Scholar
7. Franciosi, P. (1985) Acta met. 33, 16011612 Google Scholar
8. Leverant, G.R., Kear, B.H. and Oblak, J.M. (1973) Metall. Trans. 4, 355 Google Scholar
9. MacKay, R.A. and Maier, R.D. (1982), Metall. Trans. 13A, 1747 Google Scholar
10. Sass, V. Glatzel, U. and Feller-Kniepmeier, M. (1996b) in Superalloys 1996 (eds Kissinger, et al.), 283 Google Scholar
11. Sieborger, D. and Glatzel, U. (1998) Orientation Dependent Creep Behavior and Microstructure of Nickel Solid Solution Single Crystals, submitted to Acta Materialia Google Scholar
12. Knobloch, C., Toloraia, V.N. and Glatzel, U. (1997) Anisotropic Creep in Ni3(AlTiTa). Scripta Materialia 37, 14911498 Google Scholar
13. Alexander, H. and Haasen, P. (1968) Dislocations and Plastic Flow in the Diamond Structure. Solid State Physics 22, 27158 Google Scholar
14. Haasen, P. (1968) Dislocation Dynamics in the Diamond Structure. Dislocation Dynamics, eds.. Rosenfield, , Hahn, , Bement, , Jaffee, , 701722 Google Scholar