Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T11:07:47.406Z Has data issue: false hasContentIssue false

First Evidence of Singlet Oxygen Species Mechanism in Silicate Clay for Antimicrobial Behavior

Published online by Cambridge University Press:  28 June 2013

Jiun-Chiou Wei
Affiliation:
Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
Yi-Ting Wang
Affiliation:
Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
Jiang-Jen Lin*
Affiliation:
Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
Get access

Abstract

Thin silicate nanoplatelets, derived from the exfoliation of natural Sodium montmorillonite (Na+-MMT) clays, show an unexpected antimicrobial property. A physical trapping mechanism has been proposed because the clay nanoplatelets can indiscriminately inhibit the growth of a broad spectrum of bacteria, including drug-resistant species such as methicillin-resistance S. aureus (MRSA) and silver ion-resistant E. coli. The ability to generate singlet oxygen species was first observed for the clay platelets that showed a high-aspect-ratio geometric shape and the presence of surface ionic charges. By comparison, the pristine clay with a multilayered structure failed to generate any singlet oxygen species. The ability to emit singlet oxygen species provides direct evidence for the antimicrobial ability of clay through a non-chemical mechanism, which opens the potential for medical use.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aeschlimann, M., Brixner, T., Fischer, A., Kramer, C., Melchior, P., Pfeiffer, W., Schneider, C., Strüber, C., Tuchscherer, P., and Voronine, D.V., Science 333, 1723 (2010).CrossRefGoogle Scholar
Alivisatos, A.P., Science 271, 933 (1996).CrossRefGoogle Scholar
Kang, M.S., Sahu, A., Norris, D.J., and Frisbie, C.D., Nano Lett. 10, 3727 (2010).CrossRefGoogle Scholar
Yen, H.J., Hsu, S.H., and Tsai, C.L., Small 5, 1553 (2009).CrossRefGoogle Scholar
Lee, J., Mackeyev, Y., Cho, M., Li, D., Kim, J.H., Wilson, L.J., and Alvarez, P.J.J., Environ. Sci. Technol. 43, 6604 (2009).CrossRefGoogle Scholar
Yuvaraj, D., Kaushik, R., and Rao, K.N., ACS Appl. Mater. Interfaces. 2, 1019 (2010).CrossRefGoogle Scholar
Ray, S.S., and Okamoto, M., Prog. Polym. Sci. 28, 1539 (2003).Google Scholar
Olphen, H.V., Clay colloid chemistry. 2nd ed. New York: John Wiley & Sons (1997).Google Scholar
Theng, B.K.J., The chemistry of clay-organic reactions. 2nd ed. New York: John Wiley & Sons (1974).Google Scholar
Williams, L.B., Metge, D.W., Eberl, D.D., Harvey, R.W., Turner, A.G., Prapaipong, P., and Poret-Peterson, A.T., Environ. Sci. Technol. 45, 3768 (2011).CrossRefGoogle Scholar
Chu, C.C., Chiang, M.L., Tsai, C.M., and Lin, J.J., Macromolecules 38, 6240 (2005).CrossRefGoogle Scholar
Lin, J.J., Chu, C.C., Chiang, M.L., and Tsai, W.C., J. Phys. Chem. B 110, 18115 (2006).CrossRefGoogle Scholar
Wei, J.C., Yen, Y.T., Su, H.L., and Lin, J.J., J. Phys. Chem. C 115, 18770 (2011).CrossRefGoogle Scholar
Li, P.R., Wei, J.C., Chiu, Y.F., Su, H.L., Peng, F.C., and Lin, J.J., ACS Appl. Mater. Interfaces. 2, 1608 (2010).CrossRefGoogle Scholar
Tortora, G., Funke, R.B., Case, L.C., Microbiology; an introduction. New York: Addison-Wesley Longman, Inc. (2001).Google Scholar
Lion, Y., Gandin, E., and Vandevorst, A., Photochem. Photobiol. 31, 305 (1980).CrossRefGoogle Scholar
Banin, A., and Lahav, N., Nature 217, 1146 (1968).CrossRefGoogle Scholar
Schramm, L.L., and Kwak, J.C.T., Clays Clay Miner. 30, 40 (1982).CrossRefGoogle Scholar