Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T01:16:11.975Z Has data issue: false hasContentIssue false

First Principles Calculations to Describe Zirconia Pseudopolymorphs

Published online by Cambridge University Press:  10 February 2011

G. Jomard
Affiliation:
CEA-Grenoble/DRN/DTP/SECC/LA3C, Av. des Martyrs 38000 Grenoble, FRANCE Laboratoire de Physique et modélisation des Milieux Condensés CNRS B.P. 166, 38042 Grenoble-Cedex, FRANCE
T. Petit
Affiliation:
CEA-Grenoble/DRN/DTP/SECC/LA3C, Av. des Martyrs 38000 Grenoble, FRANCE
L. Magaud
Affiliation:
Laboratoire d'Etude des Propriétés des Solides CNRS B.P. 166, 38042 Grenoble-Cedex, FRANCE
A. Pasturel
Affiliation:
Laboratoire de Physique et modélisation des Milieux Condensés CNRS B.P. 166, 38042 Grenoble-Cedex, FRANCE
Get access

Abstract

The structural and electronic properties of four different structures of zirconia (ZrO2) are studied using ab initio total energy calculations. The calculations are made in the framework of density functional (DFT) and pseudopotential theory. We compare results given within the LDA (Local Density Approximation) and including Generalized Gradient Corrections (GGCs) in the Perdew Wang and Perdew Becke formalisms. We present results for pure and defective zirconia (oxygen vacancies and Zr substitution by Fe) showing the effects of such point defects on tne relative structural stabilities of the different pseudopolymorphs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iltis, X. and Lefebvre, F., Surf. and Coat. Tech. 60, 405 (1993)Google Scholar
2. Iltis, X., Lefebvre, F., and Lemaignan, C., J. Nucl. Mater. 224, 121 (1995)Google Scholar
3. Howard, C. J., Hill, R. J., and Reichert, B. E., Acta Crystallogr. B 44, 116 (1988)Google Scholar
4. Teufer, G., Acta Crystallogr. 15, 1187 (1962)Google Scholar
5. Wyckoff, R.W.G., Crystal Structures, 2nd ed. (Wiley, New York, 1963), Vol. 1 Google Scholar
6. Ohtaka, O., Yamanaka, T., and Kume, S., J. Am. Ceram. Soc. 74, 505 (1991)Google Scholar
7. Leger, J. M., Tomaszewski, P. E., Atouf, A., and Pereira, A. S, Phys. Rev. B 47, 14075 (1993)Google Scholar
8. Cohen, R. E., Mehl, M. J. and Boyer, L. L., Physica B 150 1 (1988)Google Scholar
9. Orlando, R., Pisani, C., Roetti, C., and Stefanovich, E., Phys. Rev. B 45, 2 (1992)Google Scholar
10. Wilson, M., Schonberger, U., and Finnis, M., Phys. Rev. B 54, 13 (1996)Google Scholar
11. CRC Handbook of Chemistry and Physics, 65th ed., edited by Weast, R. C. (Chemical Rubber, Boca Raton, 1985)Google Scholar
12. French, R. H., Glass, S. J., and Ohuchi, F. S., Phys. Rev. B 49, 5133 (1994)Google Scholar
13. Jomard, G., Petit, T., A. Pasturel Submitted to Phys. Rev. BGoogle Scholar
14. Dwivedi, A. and Cormack, A. N., Phil. Mag. A 61, 1 (1990)Google Scholar
15. Butler, V., Catlow, C.R.A., and Fender, B. E. F., Solid States Ionics 5, 539 (1981)Google Scholar