Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T14:37:37.060Z Has data issue: false hasContentIssue false

First-principles study of defects and carrier compensation in semiconductor radiation detector materials

Published online by Cambridge University Press:  31 January 2011

Mao-Hua Du
Affiliation:
mhdu@ornl.gov, Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, Tennessee, United States
Hiroyuki Takenaka
Affiliation:
takenaka@ornl.gov, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
David Joseph Singh
Affiliation:
singhdj@ornl.gov, Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, Tennessee, United States
Get access

Abstract

We discuss defect engineering strategies in radiation detector materials. The goal is to increase resistivity by defect-induced Fermi level pinning without causing defect-induced reductions in the carrier drifting length. We show calculated properties of various intrinsic defects and impurities in CdTe. We suggest that the defect complex of a hydrogen atom and an isovalent impurity on an anion site may be an excellent candidate in many semiconductors for Fermi level pinning without carrier trapping.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Schlesinger, T. E. Toney, J. E. Yoon, H. Lee, E. Y. Brunett, B. A. Franks, L. James, R. B. Mater. Sci. & Eng. 32, 103 (2001)Google Scholar
2 Martin, G. M. and Makram-Ebeid, S., in Deep Centers in Semiconductors, edited by Pantelides, S. T. (Gordon and Breach Science Publisher 1992)Google Scholar
3 Fiederle, M. Ebling, D. Eiche, C. Hug, P. Joerger, W.. Laasch, M. Schwarz, R. Salk, M. and Benz, K. W. J. Cryst. Growth 146, 142 (1995).Google Scholar
4 Fiederle, M. Eiche, C. Salk, M. Schwarz, R. Benz, K. W. Stadler, W. Hofmann, D. M. and Meyer, B. K. J. Appl. Phys. 84, 6689 (1998).Google Scholar
5 Khattack, G. M. and Scott, C. G. J. Phys.: Condens. Matter 3, 8619 (1991).Google Scholar
6 Soundararajan, R. Lynn, K. G. Awadallah, S. Szeles, C. and Wei, S. –H. J. Electr. Mater. 35, 1333 (2006).Google Scholar
7 Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
8 Kresse, G. and Joubert, D. Phys. Rev. B 59, 1758 (1999).Google Scholar
9 CRC Handbook of Chemistry and Physics, 88th edition, Lide, D. R. ed., CRC Press/Taylor and Francis, Boca Raton, FL (2008).Google Scholar
10 Zhang, S. B. J. Phys.: Condens. Matter 14, R881 (2002).Google Scholar
11 Grill, R. Hoschl, P. Turkevych, I. Belas, E. Moravec, P. Fiederle, M. and Benz, K. W. IEEE Trans. Nucl. Sci. 49, 1270 (2002).Google Scholar
12 Khattack, G. M. and Scott, C. G. J. Phys.: Condens. Matter 3, 8619 (1991).Google Scholar
13 Krsmanovic, N. Lynn, K. G. Weber, M. H. Tjossem, R. TGessmann, h. CSzeles, s. Eissler, E. E., Flint, J. P. and Glass, H. L. Phys. Rev. B 62, R16279 (2000)Google Scholar
14 Awadalla, S. A. Hunt, A. W. Lynn, K. G. Glass, H. Szeles, C. and Wei, S.-H, Phys. Rev. B 69, 075210 (2004).Google Scholar
15 Saucedo, E. Fornaro, L. Sochinskii, N. V. Cuña, A., Corregidor, V. Granados, D. and Diéguez, E., IEEE Trans. Nucl. Sci. 51, 3105 (2004).Google Scholar
16 Saucedo, E. Franc, J. Elhadidy, H. Horodysky, P. Ruiz, C. M. Bermúdez, V., and Sochinskii, N. V., J. Appl. Phys. 103, 094901 (2008).Google Scholar
17 Mooney, P. M. J. Appl. Phys. 67, R1 (1990).Google Scholar