Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T08:26:38.935Z Has data issue: false hasContentIssue false

First-principles study of static displacements in Fe-Pd magnetic shape-memory alloys

Published online by Cambridge University Press:  31 January 2011

Markus E. Gruner*
Affiliation:
Markus.Gruner@uni-due.de, University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration, CeNIDE, Duisburg, Germany
Get access

Abstract

This contribution reports static ionic displacements in ferromagnetic disordered Fe70Pd30 alloys obtained by relaxation of the ionic positions of a 108-atom supercell within the framework of density functional theory. Comparison with a simple statistical model based on Lennard-Jones pair interactions reveals that these displacements are significantly larger than can be explained by the different sizes of the elemental constituents. The discrepancies are presumably related to collective displacements of the Fe atoms. Corresponding distortions are experimentally observed for ordered Fe3Pt and predicted by first-principles calculations for all ordered Fe-rich L12 alloys with Ni group elements and originate from details of the electronic structure at the Fermi level.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 James, R. D. and Wuttig, M., Phil. Mag. A 77, 1273 (1998).Google Scholar
2 Kakeshita, T. and Fukuda, T., Mater. Sci. Forum 394-395, 531 (2002).Google Scholar
3 Fukuda, T., Sakamoto, T., Kakeshita, T., Takeuchi, T., and Kishio, K., Mater. Trans. 45, 188 (2004).Google Scholar
4 Ullakko, K., Huang, J. K., Kantner, C., O'Handley, R. C., and Kokorin, V. V., Appl. Phys. Lett. 69, 1966 (1996).Google Scholar
5 Sozinov, A., Likhachev, A. A., Lanska, N., and Ullakko, K., Appl. Phys. Lett. 80, 1746 (2002).Google Scholar
6 Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
7 Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).Google Scholar
8 Ebert, H., in Electronic Structure and Physical Properties of Solids, edited by Dreyssé, H., Lecture Notes in Physics, Vol. 535 (Springer, Berlin, 1999), p. 191.Google Scholar
9http://olymp.cup.uni muenchen.de/ak/ebert/SPRKKR.Google Scholar
10 Okamoto, H. (editor), Phase Diagrams of Binary Iron Alloys, Monograph Series on Alloy Phase Diagrams, Vol. 9 (ASM International, Materials Park, Ohio, USA, 1993).Google Scholar
11 Gruner, M. E., Meyer, R., and Entel, P., Eur. Phys. J. B 2, 107 (1998).Google Scholar
12 Gruner, M. E., Hoffmann, E., and Entel, P., Phys. Rev. B 67, 064415 (2003).Google Scholar
13 Buschow, K., Engen, P. van, and Jongebreur, R., J. Magn. Magn. Mater. 38, 1 (1983).Google Scholar
14 Felten, J. J., Kinkus, T. J., Reid, A. C. E., Cohen, J. B., Olson, G. B., Met. Mater. Trans. A 28, 527 (1997).Google Scholar
15 Liot, F. and Abrikosov, I. A., Phys. Rev. B 79, 014202 (2009).Google Scholar
16 Opahle, I., Koepernik, K., Nitzsche, U., and Richter, M., Appl. Phys. Lett. 94, 072508 (2009).Google Scholar
17 Gruner, M. E., Adeagbo, W. A., Zayak, A. T., Hucht, A., and Entel, P., arXiv:0911.3115 (2009).Google Scholar