Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T02:49:23.996Z Has data issue: false hasContentIssue false

Flexible Surface Acoustic Wave Based Temperature and Humidity Sensors

Published online by Cambridge University Press:  27 January 2014

X.L. He
Affiliation:
Department of Information Science & Electronic Engineering, Zhejiang University and Cyrus Tang Center for Sensor Materials and Applications, 38 Zheda Road, Hangzhou 310027, China.
J. Zhou
Affiliation:
Department of Information Science & Electronic Engineering, Zhejiang University and Cyrus Tang Center for Sensor Materials and Applications, 38 Zheda Road, Hangzhou 310027, China.
W.B. Wang
Affiliation:
Department of Information Science & Electronic Engineering, Zhejiang University and Cyrus Tang Center for Sensor Materials and Applications, 38 Zheda Road, Hangzhou 310027, China.
W.P. Xuan
Affiliation:
Department of Information Science & Electronic Engineering, Zhejiang University and Cyrus Tang Center for Sensor Materials and Applications, 38 Zheda Road, Hangzhou 310027, China.
D.J. Li
Affiliation:
Institute of Renewable Energy and Environment Technology, Bolton University, Deane Road, Bolton BL3 5AB, United Kingdom
S.R. Dong
Affiliation:
Department of Information Science & Electronic Engineering, Zhejiang University and Cyrus Tang Center for Sensor Materials and Applications, 38 Zheda Road, Hangzhou 310027, China.
H. Jin
Affiliation:
Department of Information Science & Electronic Engineering, Zhejiang University and Cyrus Tang Center for Sensor Materials and Applications, 38 Zheda Road, Hangzhou 310027, China.
Y. Xu
Affiliation:
Department of Information Science & Electronic Engineering, Zhejiang University and Cyrus Tang Center for Sensor Materials and Applications, 38 Zheda Road, Hangzhou 310027, China.
J.K. Luo*
Affiliation:
Department of Information Science & Electronic Engineering, Zhejiang University and Cyrus Tang Center for Sensor Materials and Applications, 38 Zheda Road, Hangzhou 310027, China. Institute of Renewable Energy and Environment Technology, Bolton University, Deane Road, Bolton BL3 5AB, United Kingdom
*
*Corresponding authors E-mail: J.Luo@bolton.ac.uk
Get access

Abstract

Flexible surface acoustic wave (SAW) based temperature and humidity sensors were fabricated and characterized. ZnO piezoelectric films were deposited on polyimide substrates by DC magnetron sputtering. ZnO films possess (0002) crystal orientation with large grain sizes of 50∼70 nm. SAW devices showed two wave modes, namely the Rayleigh and Lamb modes, with the frequencies at fR ∼132MHz and fL∼427MHz respectively for a wavelength of 12 μm device. The two resonant frequencies have a temperature coefficient of frequency (TCF) of −423ppm/K and −258ppm/K for the Rayleigh and Lamb waves, respectively. The SAW sensors exhibited a good repeatability in responding to cyclic change of humidity. The responses of the sensors increase with the increase in humidity, and the sensitivity increases with the decrease in wavelength. A high sensitivity of 34.7 kHz/10%RH has been obtained from a SAW device without any surface treatment, demonstrated that the flexible SAW humidity sensors are very promising for application in flexible sensors and microsystems.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rogers, J. A., Someya, T., Huang, Y.G., Science 327, 1603 (2010).CrossRefGoogle Scholar
Sire, C., Lepilliet, F.S., Seo, J.W., Hersam, M.C., Dambrine, G., Happy, H. and Derycke, V., Nano Lett. 12, 1184 (2012).CrossRefGoogle Scholar
Lai, W.C., Chen, J.T. and Yang, Y.Y., Appl. Phys. Lett. 102, 191115 (2013).CrossRefGoogle Scholar
Lemke, T., Biancuzzi, G., Feth, H., Huber, J., Goldschmidtböing, F. and Woias, P., Sens. & Actuat. A. 168, 213 (2011).CrossRefGoogle Scholar
Xiao, S.Y., Che, L.F., Li, X.X., and Wang, Y.L., Microelectron. Eng. 85, 452 (2008).CrossRefGoogle Scholar
Wright, R., Hakemi, G. & Kirby, P., Microelectron Eng. 88, 1006 (2011).CrossRefGoogle Scholar
Park, K.I., Lee, M., Liu, Y., Moon, S., Hwang, G.T., Zhu, G., Kim, J.E., Kim, S.O., Kim, D.K., Wang, Z.L., and Lee, K.J., Adv. Mater. 24, 2999 (2012).CrossRefGoogle Scholar
Fu, Y. Q., Luo, J. K., Du, X. Y., Flewitt, A. J., Li, Y., Markx, G. H., Walton, A. J., Milne, W. I., Sens.&Actuat. B. 143, 606 (2010).CrossRefGoogle Scholar
Lim, C., Wang, W., Yang, S. &Lee, K. Sens. Actuat. B 154, 9 (2011).CrossRefGoogle Scholar
Lee, K., Wang, W., Kim, T. & Yang, S. J. Micromech. Microeng. 17, 515 (2007).CrossRefGoogle Scholar
Oh, H., Wang, W., Lee, K., Park, I. & Yang, S. S. Int. J. on Smart Sensing & Intelligent Syst. 1, 940 (2008).CrossRefGoogle Scholar
Du, X.Y., Fu, Y. Q., Tan, S. C., Luo, J. K., Flewitt, A. J., Milne, W. I., Lee, D. S., Park, N. M., Park, J., Choi, Y. J., Appl. Phys. Lett. 93, 094105 (2008).CrossRefGoogle Scholar
Fu, Y.Q., Garcia-Gancedo, L., Pang, H. F., Porro, S., Gu, Y. W., Luo, J. K., Zu, X. T., Placido, F., Wilson, J.I.B., Flewitt, A. J., Biomicrofluid. 6, 024105 (2012).CrossRefGoogle Scholar
Luo, J. K., Fu, Y. Q., Ashley, G., Milne, W. I., Adv. Sci. Technol. 67, 449 (2011).Google Scholar
Fachberger, R. & Erlacher, A. Procedia.Eng. 5, 224 (2010).CrossRefGoogle Scholar
Du, X. Y. Du, X.Y., Swanwick, M., Fu, Y.Q., Luo, J.K., Flewitt, A.J., Lee, D.S., Maeng, S., Milne, W.I.; J. Micromech. Microeng. 19, 035016 (2009).Google Scholar
Brizoual, L. L. et al. . IEEE Tran. Ultrason. Ferroelectr. Freq. Control. 55, 442 (2008).CrossRefGoogle Scholar
Wu, T.T., Chen, Y.Y. and Chou, T.H., J. Phys. D: Appl. Phys. 41, 085101(2008).CrossRefGoogle Scholar
Penza, M., Anisimkin, V.I., Sens.&Actuat. A. 76, 162 (1999) .CrossRefGoogle Scholar
Lin, Q.Q., Li, Y. and Yang, M.J., Analytica Chimica Acta. 748, 73 (2012).CrossRefGoogle Scholar
Jin, H., Zhou, J., He, X.L., Wang, W.B., Guo, H.W., Dong, S.R., Wang, D.M., Xu, Y., Geng, J., Luo, J.K. and Milne, W.I.; Scientific Reports. 3 ,2140 (2013).CrossRefGoogle Scholar
Zhou, J., He, X.L., Jin, H., Wang, W.B., Feng, B., Dong, S.R., Wang, D.M., Zou, G.Y. and Luo, J.K., J. Appl. Phys. 114, 044502 (2013).CrossRefGoogle Scholar
Wei, C. L., Chen, Y. C., Cheng, C. C., Kao, K. S., Cheng, D. L. and Cheng, P. S., Thin Solid Films 518, 3059(2010).CrossRefGoogle Scholar
He, X.L., Li, D.J., Zhou, J., Wang, W.B., Xuan, W.P., Dong, S.R., Jin, H. and Luo, J.K.; J. Mater. Chem. C. 39 6210 (2013).CrossRefGoogle Scholar
Guo, Y. J., Zhang, J., Zhao, C., Ma, J. Y., Hu, P. A., Placido, F., Zu, X. T. and Fu, Y. Q., Mater. Res. Bull., online available at DOI:10.1016/j.materresbull.2013.04.072.CrossRefGoogle Scholar
Sauerbrey, G., Z. Phys. 155, 206 (1959).CrossRefGoogle Scholar
Caliendo, C., Verona, E. and Anisimkin, V.I., Smart. Mater. Struct. 6, 707(1997).CrossRefGoogle Scholar