Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T19:41:55.412Z Has data issue: false hasContentIssue false

Fluorination of Uranium Metal to UF3 and UF4 by Nitrogen Trifluoride: Evidence for Elusive UF2

Published online by Cambridge University Press:  01 February 2011

Bruce K McNamara
Affiliation:
bruce.mcnamara@pnl.gov, Pacific Northwest National Laboratory, Richland, Washington, United States
Randall Scheele
Affiliation:
randall.scheele@pnl.gov, Pacific Northwest National Laboratory, Richland, Washington, United States
Andrew M Casella
Affiliation:
andrew.casella@pnl.gov, Pacific Northwest National Laboratory, Richland, Washington, United States
Anne E Kozelisky
Affiliation:
anne.kozelisky@pnl.gov, Pacific Northwest National Laboratory, Richland, Washington, United States
Doinita Neiner
Affiliation:
neiner.doinita@pnl.gov, Pacific Northwest National Laboratory, Richland, Washington, United States
Get access

Abstract

We have recently found that uranium and plutonium metals will react with nitrogen trifluoride (NF3) at temperatures below 120°C. These are the first reported instances of such low temperature fluorination reactions using NF3 and implicate metal catalyzed dissociation of the NF3 bond. We additionally present preliminary evidences for a surface mediated product distribution. Reaction of uranium metal with NF3 promotes products that are apparently determined by the concentration of the fluorinating reagent between temperatures of 60 to 120°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 McNamara, B. K. Scheele, R. D. Kozelisky, A. E. Edwards, M. K. J. Nucl. Mater. 394, 166 (2009).Google Scholar
2 MacFadden, K.O. Tschuikow-Roux, E., J. Phys. Chem. 77, 1475 (1973).Google Scholar
3 Evans, P. J. Tschuikow-Roux, E., Chem. Phys. 65, 4202 (1976).Google Scholar
4 Miotto, R. Ferraz, A. C. Srivastava, G. P. Surface Science 454456, 152 (2000).Google Scholar
5 Shorter, J. A. Langan, J. G. Steinfeld, J. I. Surf. Sci. 219, L560 (1989).Google Scholar
6 Little, T. W. Ohuchi, F. S. Mater. Res. Soc. Symp. Proc. 439, 251 (1997).Google Scholar
7 Walczak, M. M. Johnson, A. L. Thiel, P.A. Madey, T. E. J. Vac. Sci. Technol. A6, 675 (1988).Google Scholar
8 Nandi, D. Rangwala, S.A. Kumar, S.V.K. Krishnakumar, E. Int. J. Mass. Spectrom. 205, 111 (2001).Google Scholar
9 Harland, P. W. Franklin, J. L. J. Chem. Phys. 61, 1621 (1974).Google Scholar
10 Kastenmeier, B. E. Matsuo, P. J. Oehrleen, G. S. Langan, J. G., J. Vac. Sci. Technol. A16, 2047 (1998).Google Scholar
11 Rzeznicka, I. I. Lee, J. Yates, J. T. Jr. , Surface Science 600, 4492 (2006).Google Scholar
12 Takagi, T. Tamura, M. Shibakami, M. Quan, H. Sekiya, A. Journal of Fluorine Chemistry 105, 45 (2000).Google Scholar
13 Colburn, B. Kennedy, A. J. Am. Chem. Soc. 80, 5004 (1958).Google Scholar