Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T01:06:28.421Z Has data issue: false hasContentIssue false

Formation and Stability of Extended Solid Solutions Made by Rapid Quenching from the Melt

Published online by Cambridge University Press:  15 February 2011

Howard Jones*
Affiliation:
Department of Metallurgy, University of Sheffield, St. George's Sq., Sheffield S1 3JD, England.
Get access

Abstract

Extension of solid solubility by rapid quenching from the melt (RQM) enormously increases scope for alloy development in metals such as aluminium for which solid solubility is particularly limited under equilibrium conditions. The present contribution reviews mainly recent work concerned with matching of experimental observations with predictions affecting:

  1. (1) conditions for solidification without change in composition

  2. (2) temperatures and modes of deconposition on subsequent heating

  3. (3) hardening effects as-quenched and on heat treatment.

The significance of such findings for bulk production and consolidation of wrought products for engineering applications is briefly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jones, H., Aluminium 54, 274 (1978).Google Scholar
2.Midson, S.P. and Jones, H., presented at Rapidly Quenched Metals IVSendai, JapanAugust 1981, Paper 8.2(1).Google Scholar
3.Biloni, H. and Chalmers, B., Trans. Met. Soc. AIME 233, 373 (1965).Google Scholar
4.Ramachandrarao, P. et al. , Trans. Met. Soc. AIME 245, 890 (1969);Google Scholar
Ramachandrarao, P. et al. Phil. Mag. 25, 961 (1972).Google Scholar
5.Thomas, P.M., Ph.D. Thesis, University of Wales, Swansea, 1976.Google Scholar
6.Baker, J.C. and Cahn, J.W., Acta Met. 17, 575 (1969).10.1016/0001-6160(69)90116-3Google Scholar
7.White, C.W. et al. , J. Appl. Phys., 50, 3261 (1979),10.1063/1.326366Google Scholar
51, 738 (1980).Google Scholar
8.Leamy, H.J. et al. , J. Cryst. Growth, 48, 379 (1980).10.1016/0022-0248(80)90032-9Google Scholar
9.Stuck, R. et al. , Appl. Phys. 23, 15 (1980).10.1007/BF00899564Google Scholar
10.Mullins, W.W. and Sekerka, R.F., J. Appl. Phys. 35, 444 (1964).10.1063/1.1713333Google Scholar
11.Kurz, W. and Fisher, D.J., Acta Met. 29, 11 (1981).10.1016/0001-6160(81)90082-1Google Scholar
12.Gulyaev, B.B., Dokl. Chem. 164, 837 (1965).Google Scholar
13.Cohen, M. et al. in: Rapid Solidification Processing: Principles and Technologies II, Mehrabian, R. et al. , eds. (Claitor's, Baton Rouge, La 1980) pp. 123.Google Scholar
14.Ichikawa, R. et al. , Trans. Jap. Inst. Met. 12, 280 (1971).10.2320/matertrans1960.12.280Google Scholar
15.Hori, S. et al. , J. Jap. Inst. Light Met. 30, 617 (1980) and as ref. 2, Paper 8.1(9).10.2464/jilm.30.617Google Scholar
16.Jones, H. in: Vacancies '76, Smallman, R.E. and Harris, J.E. eds. (The Metals Society, London 1977) pp. 175184.Google Scholar
17.Sahin, E. and Jones, H. in: Rapidly Quenched Metals III, Cantor, B. ed. (The Metals Society, London 1978) Vol. 1, pp. 138146.Google Scholar
18.Jones, H., as ref. 13, pp. 306316.10.1016/0261-2194(94)90023-XGoogle Scholar
19.Midson, S.P. et al. , as ref. 2, Paper 8.1(8).Google Scholar
20.Hillier, G. and Ward, J.C., unpublished work, University of Sheffield 1981.Google Scholar
21.Agarwal, S.C. and Herman, H., Scripta Met. 7, 503 (1973).10.1016/0036-9748(73)90103-8Google Scholar
22.Furrer, P. and Warlimont, H., Z. Metallkunde 64, 236 (1973).Google Scholar
23.Fontaine, A. and Guinier, A., Phil. Mag. 31, 65, 839 (1975).10.1080/14786437508229286Google Scholar
24.Kunstelj, D. and Bonefačić, A. in: Microstructural Science, Vol. 3, French, P.M. et al. , (Elsevier, New York, 1975) pp. 207215.Google Scholar
25.Jacobs, M.H. et al. , Fizika 2 Suppl. 2 Paper 18 (1970); J. Mater. Sci. 9, 1631 (1974).10.1007/BF00540762Google Scholar
26.Blank, E., Fizika 2 Suppl. 2 Paper 24 (1970); Z. Metallkunde 63, 315, 324 (1972).Google Scholar
27.Thursfield, G.T. and Stowell, M.J., J. Mater. Sci. 9, 1644 (1974).10.1007/BF00540763Google Scholar
28.Krishnanand, K.D. and Cahn, R.W. in: Rapidly Quenched Metals, Grant, N.J. and Giessen, B.C. eds. (MIT Press, Cambridge, Mass. 1976) pp. 6775.Google Scholar
29.Laine, E.S.U. et al. , Acta Met. 28, 1565 (1980).10.1016/0001-6160(80)90058-9Google Scholar
30.Bhat, S.P. et al. , J. Mater. Sci. 9, 1759 (1974).10.1007/BF00541743Google Scholar
31.Ham, F.S., J. Phys. Chem. Solids 6, 335 (1958).10.1016/0022-3697(58)90053-2Google Scholar
32.Pontikakos, Y., Ph.D. Thesis, Sheffield, 1978.Google Scholar
33.Babić, et al. , Phys. Stat. Solidi 16, K21 (1973);10.1002/pssa.2210160143Google Scholar
J. Phys. F. Met. Phys. 8, 703 (1976).Google Scholar
34.Fontaine, A., as ref. 28, pp. 163167.Google Scholar
35.Borchers, H. et al. , Metall 25, 225 (1971).Google Scholar
36.Friedel, J.: Dislocations (Pergamon, London 1964) pp. 379383.Google Scholar
37.Petty, E.R., J. Inst. Met. 89, 343 (1960/61).Google Scholar
38.Jones, H., Mater. Sci. Eng. 5, 1 (1969).10.1016/0025-5416(69)90077-9Google Scholar
39.Nagakama, K. and Miki, I., Trans. Jap. Inst. Met. 15, 185 (1974);10.2320/matertrans1960.15.185Google Scholar
J. Jap. Inst. Light Metals 24, 77 (1974).10.2464/jilm.24.77Google Scholar
40.Furrer, P. and Warlimont, H., Mater. Sci. Eng. 28, 127 (1977).10.1016/0025-5416(77)90096-9Google Scholar