Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-14T17:54:05.241Z Has data issue: false hasContentIssue false

Formation of a Co3O4 Top Layer in SiO2 Cobalt Containing Coatings Sol-gel Obtained

Published online by Cambridge University Press:  21 March 2011

H. Tototzintle-Huitle
Affiliation:
Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Apdo. Postal 1-798, C.P. 76001, Querétaro, Qro., México
A. Ramos-Mendoza
Affiliation:
Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Apdo. Postal 1-798, C.P. 76001, Querétaro, Qro., México
A. Mendoza-Galván
Affiliation:
Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Apdo. Postal 1-798, C.P. 76001, Querétaro, Qro., México
J. González-Hernández
Affiliation:
Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Apdo. Postal 1-798, C.P. 76001, Querétaro, Qro., México
B. S. Chao
Affiliation:
Energy Conversion Devices, Troy, MI
Get access

Abstract

SiO2 coatings containing cobalt were prepared on glass substrates using the sol-gel method. It has been found that in coatings with a Si to Co ratio of 1.3, a layer of Co3O4 is formed at the free surface of the coating upon thermal annealings in air. The properties of the coatings were studied using optical, x-ray and Auger depth profile measurements. The thermal annealings in the temperature range of 300 to 500 oC, in steps of 50 oC, were performed for 10 min. Some samples were subjected to an isothermal annealing at 400 °C for different times from 10 to 210 min. From the x-ray diffraction patterns the cubic spinel structure of Co3O4 was detected after the thermal treatments. The optical reflection and transmission spectra for each annealing temperature and annealing time, are described with an air-Co3O4-SiO2:Co2+-substrate system. From this, the cobalt oxide thickness was obtained as a function of the annealing temperature and annealing time. From the Arrhenius plots, in the temperature range studied, it was found that the activation energy for the growth of the cobalt oxide layer is 0.41 eV. The layer thickness follows a parabolic behavior with time, which suggests a diffusion-controlled process. The Auger depth profiles obtained from a sample annealed at 500 °C confirm the optical model used.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brinker, C. J. and Scherer, G. W., Sol-Gel Science (Academic Press, New York, 1990).Google Scholar
2. Orgaz, F. and Rawson, H., J. Non-Cryst.. Solids 82, 378 (1986).Google Scholar
3. Durán, A., Navarro, J. M. Fernández, Casariego, P., and Joglar, A., J. Non-Cryst. Solids 82, 391 (1986).Google Scholar
4. Yáñez-Limón, J. M., Pérez-Robles, J. F., González-Hernández, J., Zamorano-Ulloa, R., and Ramírez-Rosales, D., Thin Solid Films 373, 184 (2000).Google Scholar
5. Pérez-Robles, J. F., García-Rodríguez, F. J., Jiménez-Sandoval, S., and GonzálezHernández, J., J. Raman Spectrosc. 30, 1099 (1998).Google Scholar
6. Mendoza-Galván, A., Pérez-Robles, J. F., Espinoza-Beltrán, F. J., Ramírez-Bon, R., Vorobiev, Y. V., González-Hernández, J., and Martínez, G., J. Vac. Sci. Technol. A 17, 1103 (1999).Google Scholar
7. De, G., Gusso, M., Tapfer, L., Catalano, M., Gonella, F., Mattel, G., Mazzoldi, P., and Battaglin, G., J. Appl. Phys. 80, 6734 (1996).Google Scholar
8. Ennas, G., Mei, A., Musinu, A., Piccaluga, G., Pinna, G., and Solinas, S., J. Non-Cryst. Solids 232–234, 587 (1998).Google Scholar
9. Ramos-Mendoza, A., Tototzintle-Huitle, H., Mendoza-Galván, A., González-Hernández, J., and Chao, B. S., J. Vac. Sci. Technol. A, to be published.Google Scholar
10. Estrada, W., Fantini, M. C. A., Castro, S. C. de, Fonseca, C. N. Polo da, and Gorenstein, A., J. Appl. Phys. 74, 5835 (1993).Google Scholar
11. Athey, P. Ruzakowski, Urban, F. K. III, Tabet, M. F., and McGahan, W. A., J. Vac. Sci. Technol. A 14, 685 (1996).Google Scholar
12. Jellison, G. E. Jr and Modine, F. A., Appl. Phys. Lett. 69, 371 (1996); 69, 2137(E) (1996).Google Scholar
13. Jellison, G. E. Jr, Thin Solid Films 234, 416 (1993).Google Scholar
14. Zeng, H. C., Lin, J. and Tan, K. L., J. Mater. Res. 10, 3096 (1995).Google Scholar
15. Crank, J., The Mathematics of Diffusion, 2nd ed. (Oxford University Press, New York, 1999) p. 305.Google Scholar