Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T09:59:56.694Z Has data issue: false hasContentIssue false

Formation of an Ordered Array of Nanocrystalline Si Dots by Using a Solution Droplet Evaporation Method

Published online by Cambridge University Press:  21 March 2011

Yoshishige Tsuchiya
Affiliation:
Quantum Nanoelectronics Research Center, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
Tatsuya Iwasa
Affiliation:
Quantum Nanoelectronics Research Center, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
Atsushi Tanaka
Affiliation:
Quantum Nanoelectronics Research Center, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
Ko-Ichi Usami
Affiliation:
Quantum Nanoelectronics Research Center, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
Hiroshi Mizuta
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
Shunri Oda
Affiliation:
Quantum Nanoelectronics Research Center, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
Get access

Abstract

This paper reports on a new bottom-up technique of forming silicon nanostructures based on natural aggregation of nanocrystalline (nc) -Si dots in the solution. We first study how the nc-Si dots deposited on the Si substrate get mobile in the solution by simply dipping the substrate with the nc-Si dots on into various solutions. We then demonstrate a solution droplet evaporation method that utilizes aggregation of the dots when we evaporate a solution droplet applied onto the nc-Si dots randomly deposited on the Si substrate. It is shown that the nc-Si dots are assembled well in a droplet of the hydrofluoric acid solution, resulting in various regular patterns on the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ifuku, T., Otobe, M., Itoh, A., and Oda, S., Jpn. J. Appl. Phys. 36, 4031 (1997).Google Scholar
2. Nishiguchi, K., Hara, S., and Oda, S., Mat. Res. Soc. Symp. Proc. 571, 43 (2000).Google Scholar
3. Nishiguchi, K., Chao, X., and Oda, S., J. Appl. Phys. 92, 2748 (2002).Google Scholar
4. Nakajima, Y., Kojima, A., and Koshida, N., Appl. Phys. Lett. 81, 2472 (2002).Google Scholar
5. Oda, S., and Nishiguchi, K., J. Phys. IV France, 11, Pr3-1065 (2001).Google Scholar
6. Theobald, J. A., Oxtoby, N. S., Phillips, M. A., Champness, N. R., and Beton, P. H., Nature 424, 1029 (2003).Google Scholar
7. Xia, Y., Gates, B., Yin, Y., and Lu, Y., Adv. Mater. 12, 693 (2000).Google Scholar
8. Denkov, N. D., Velev, O. D., Kralchevsky, P. A., Ivanov, I. B., Yoshimura, H., and Nagayama, K., Nature 361, 26 (1993).Google Scholar
9. Lazarov, G. S., Denkov, N. D., Velev, O. D., Kralchevsky, P. A., and Nagayama, K., J. Chem, Soc. Faraday Trans., 90, 2077 (1994).Google Scholar
10. Omachi, J., Nakamura, R., Nishiguchi, K., and Oda, S., Mat. Res. Soc. Symp. Proc. 638, F5.3, 1 (2001).Google Scholar