Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T06:55:31.816Z Has data issue: false hasContentIssue false

Formation of Au-nanocrystals in TiO2 and SrTiO3 by ion implantation in restricted volumes

Published online by Cambridge University Press:  01 February 2011

R. Fromknecht
Affiliation:
Forschungszentrum Karlsruhe, Institut für Festkörperphysik, Germany
G. Linker
Affiliation:
Forschungszentrum Karlsruhe, Institut für Festkörperphysik, Germany
K. Sun
Affiliation:
The University of Michigan, Dept. of Nucl. Eng. and Rad. Science, USA
S. Zhu
Affiliation:
The University of Michigan, Dept. of Nucl. Eng. and Rad. Science, USA
L.M. Wang
Affiliation:
The University of Michigan, Dept. of Nucl. Eng. and Rad. Science, USA
A. van Veen
Affiliation:
Interfaculty Reactor Institute, Delft University of Technology, The Netherlands
M.A. van Huis
Affiliation:
Interfaculty Reactor Institute, Delft University of Technology, The Netherlands
T. Weimann
Affiliation:
Physikalisch-Technische Bundesanstalt Braunschweig, Germany
J. Wang
Affiliation:
Physikalisch-Technische Bundesanstalt Braunschweig, Germany
J. Niemeyer
Affiliation:
Physikalisch-Technische Bundesanstalt Braunschweig, Germany
F. Eichhorn
Affiliation:
Forschungszentrum Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Dresden, Germany
T. Wang
Affiliation:
Forschungszentrum Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Dresden, Germany
Get access

Abstract

Au-ions were implanted at RT conventionally and through a mask into TiO2- and SrTiO3-single crystals with doses in the range from 1×1015Au+/cm2 to 1×1017Au+/cm2, and dose rates of ∼1011ions/sec and ∼3×1013ions/sec, at an energy of 260keV; some samples subsequently were annealed at temperatures up to 1100K. The Au-atoms precipitated to nanocrystals during implantation with an average particle size of 1.5nm. HRTEM investigations revealed that the Au-nanocrystals, embedded in amorphous TiO2-regions, have a broad size distribution varying from large sizes in the near surface region to smaller sizes at larger depths. In the annealing process a coarsening and a reorientation of the Au-nanocrystals is observed. At 1000K the particle size of the textured Au-implant was evaluated to be ∼6nm. Implantation with a high dose rate performed through a metal mask with holes of 120μm diameter and without annealing resulted in an almost equidistant arrangement of the Au-nanocrystals with a narrow size distribution of 2–6nm in TiO2 and 3–5nm in SrTiO3 in the near surface region. Au-ion implantation through an e-beam resist mask (50nm × 50nm holes), with doses ranging from 1×1015Au+/cm2 to 4×1015Au+/cm2 at the low dose rate and annealed at 1000K, lead to a periodic structure of the Au-nanocrystals. The nanocrystal size, evaluated from TEM analysis, in the as-implanted state was ∼5nm and after annealing at 1000K sizes of several nanometers to several tens of nanometers were observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meldrum, A., Boatner, L. A., White, C. W., Ewing, R. C., “Ion irradiation effects in nonmetals: formation of nanocrystals and novel microstructuresMat. Res. Innovat. (2000) 3, 190.Google Scholar
2. Gittins, D. I., Susha, A. S., Schoeler, B., Caruso, F., “Dense Nanoparticulate Thin Films via Gold Nanoparticle Self AssemblyAdv. Mater. (2002) 14, 508. Google Scholar
3. Hosono, H., Fukushima, H., Abe, Y., Weeks, R. A. and Zur, R. A., “Cross-sectional TEM observation of copper-implanted SiO2 glass”, J. Non. Cryst. Solids, 143, (1992) 157.Google Scholar
4. Fromknecht, R. et. al, “Electrical conductivity in ion implanted TiO2”, Proc. IIT98 conference, ISBN 0–7803–4538-X, (1998) 1059.Google Scholar
5. Weishart, H., Heera, V., and Eichhorn, F.; Pecz, B. and Barna, A.; Skorupa, W., “High-Fluence Si-implanted diamond: Formation of Si-nanocrystals and sheet resistance”, Jour. Appl. Phys., 94, 2, (2003) 1195.Google Scholar
6. King, A. C., Guiterez, A. F., Saavedra, A. F., and Jones, K. S., Downey, D. F., “Defect evolution of low energy amorphizing germanium implants in silicon”, Jour. Appl. Phys. 93, 5, (2003) 2449.Google Scholar
7. Heinig, K. H., Schmidt, B. and Bernas, H., “Inverse Ostwald ripening of nanocrystals under ion irradiation” Annual Report IIM 2001, FZR-338, 17.Google Scholar
8. Sun, K., Zhu, S., Fromknecht, R., Linker, G., Wang, L.M., “Formation of single-layered Au nanoparticles in Au ion implanted TiO2 and SrTiO3 ”, Materials Letters, 58 (2004) 547.Google Scholar
9. van Huis, M.A., van Veen, A., Schut, H., Eijt, S. W. H., Kooi, B. J. and De Hosson, J.Th.M., “Optical and structural properties of Li, Zn, Ag and Au nanoclusters embedded in MgO”, Reviews on Advanced Materials Science 4, No. 1 (2003) 6064.Google Scholar
10. Vystavel, T., Palasantzas, G., Koch, S.A. & De Hosson, J.T.M. Nanosized iron clusters investigated with in situ transmission electron microscopy. Applied Physics Letters 82 (2) (2003) 197.Google Scholar
11. Dulub, O., Hebenstreit, W., and Diebold, U., “Imaging Cluster Surfaces with Atomic Resolution: The Strong Metal-Support Interaction State of Pt Supported on TiO2 (110)PRL, 84, 16, (2000) 3646.Google Scholar
12. Weimann, T., Geyer, W.; Hinze, P., Stadler, V., Eck, W., Gölzhäuser, A., “Nanoscale Patterning of Self-assembled Monolayers by E-beam Lithography”. In: Microelectronic Engineering: 57–58 (2001) 903.Google Scholar
13. Biersack, J.P., and Haggmark, L. G., “A Monte Carlo program for the transport of energetic ions in amorphous materialNucl. Instr. and Meth. 174 (1980) 257.Google Scholar
14. Doolittle, R., “Algorithm for the rapid simulation of Rutherford backscattering spectraNucl. Instr. and Meth. B 9 (1985) 344.Google Scholar
15. Kishimoto, N., Umeda, N., Takeda, Y., Lee, C.G., and Grytsyna, V.T., “Self-assembled two-dimensional distribution of nanopreciparticles with high-current Cu-implantation into insulators”, Nucl. Instr. and Meth. B 148, (1999) 1017.Google Scholar