Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T10:21:14.615Z Has data issue: false hasContentIssue false

Formation of Intrinsic Defects at MBE-Grown GaAs/AlAs Interfaces

Published online by Cambridge University Press:  15 February 2011

P. Krispin
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, D - 1086 Berlin, Germany
R. Hey
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, D - 1086 Berlin, Germany
H. Kostial
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, D - 1086 Berlin, Germany
M. Höricke
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, D - 1086 Berlin, Germany
Get access

Abstract

We report on a detailed investigation of MBE-grown isotype silicon-doped heterostructures by capacitance/voltage (C/V) technique and deep-level transient spectroscopy (DLTS). A sequence of electrically active defects is found. By depth profiling of the density of the dominant levels it is demonstrated that the corresponding defects are concentrated at the GaAs-on-AlAs (inverted) interface. By comparison with studies on irradiation-induced levels in LPE- or VPE-grown AlGaAs we conclude that the defects at the GaAs/AlAs interface are most probably linked to different charge states of the arsenic vacancy VAs and VAs−ASi pairs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lefèvre, H. and Schulz, M., Appl. Phys. 12, 45 (1977).Google Scholar
2. Krispin, P., Hey, R., Kostial, H., and Höricke, M., J. Crystal Growth 127, 1073 (1993).Google Scholar
3. Guzzi, M. and Staehli, J. L., in Physics of DX Centers in GaAs Alloys, edited by Bourgoin, J. C. (Sci-Tech Publications, Liechtenstein, 1990), p. 25.Google Scholar
4. Zohta, Y. and Watanabe, M. O., J. Appl. Phys. 53, 1809 (1982).Google Scholar
5. Krispin, P. et al., to be publishedGoogle Scholar
6. Kravchenko, A. F. and Prints, V. Ya., Sov. Phys. Semicond. 12, 952 (1978).Google Scholar
7. Loualiche, S., Guillot, G., Nouailhat, A., and Bourgoin, J., Phys. Rev. B 26, 7090 (1982).Google Scholar
8. Lang, D. V., Logan, R. A., and Kimerling, L. C., Phys. Rev. B 15, 4874 (1977).CrossRefGoogle Scholar
9. Stievenard, D., Boddaert, X., Bourgoin, J. C., and Bardeleben, H. J. von, Phys. Rev. B 41, 5271 (1990).CrossRefGoogle Scholar
10. Pashley, M. D., Haberem, K. W., and Feenstra, R. M., J. Vac. Sci. Technol. B 10, 1874 (1992).Google Scholar