Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T06:57:03.875Z Has data issue: false hasContentIssue false

Formation of Stacking Faults and Misfit Dislocations During Zn Diffusion-Enhanced Intermixing of a GaInAsP/InP Heterostructure

Published online by Cambridge University Press:  25 February 2011

El-Hang Lee
Affiliation:
Electronics and Telecommunications Research Institute, P.O. Box 8, Daeduk Science Town, Daejeon 305-606
Jeong Yong Lee
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daeduk Science Town, Daejeon 305-701
O'Dae Kwon
Affiliation:
Department of Electrical Engineering, Pohang Institute of Science and Technology, Pohang, Kyungbuk 790-330, Republic of Korea
Get access

Abstract

The microstructural degradation of a lattice-matched Ga0.28 In0.72As0.61P0.39/InP heterointerface during atomic intermixing induced by Zn diffusion has been investigated using high-resolution transmission electron microscopy and Auger electron spectroscopy. The localized interfacial stress caused by intermixing appears to create stacking faults in the Ga-mixed InP substrate, and dislocation tangles in the In-mixed GalnAsP layer. The results are attributed to the contrasted effect of tensile and compressive stresses upon the nucleation of partial dislocations from both sides of the intermixed interface. A qualitative model is proposed for the homogeneous nucleation of misfit dislocations from the locally stressed interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sharan, and Narayan, J., J. Appl. Phys. 66, 2376 (1989).Google Scholar
2. Chang, H., Bhattacharya, P. K., and Gibala, R., J. Appl. Phys. 66, 2993 (1989).Google Scholar
3. Deppe, G. and Holonyak, N. Jr., J. Appl. Phys. 64, R93, (1988).Google Scholar
4. Schwarz, A., Mei, P., Venkatesan, T., Bhat, R., Hwang, D. M., Schwartz, C. L., Koza, M., Nazar, L., and Skromme, B. J., Appl. Phys. Lett. 53, 1051 (1988).Google Scholar
5. Park, H.-H., Kang, B. K., Nam, E. S., Lee, Y. T., Kim, J. H., and Kwon, O’D., Appl. Phys. Lett. 55, 1768 (1989).Google Scholar
6. Chew, G. and Cullis, A. G., Appl. Phys. Lett. 44, 142 (1984).Google Scholar
7. Maree, P. M. J., Barbour, J. C., van der Veen, J. F., Kavanagh, K. L., Bulle-Lieuwma, C. W. T., and Viegers, M. P. A., J. Appl. Phys. 62, 4413 (1987).Google Scholar
8. Petruzzello, J. and Leys, M. R., Appl. Phys. Lett. 53, 2414 (1988).Google Scholar
9. Hull, D., Introduction to Dislocations, 2nd ed. (Pergamon Press, New York, 1975), p.175.Google Scholar
10. Gerthsen, D., Ponce, F. A., and Anderson, G. B., Phil. Mag. A, 59, 1045 (1989).Google Scholar
11. Deppe, D. G., Holonyak, N. Jr., Hsieh, K. C., Nam, D. W., Piano, W. E., Matyi, R. J., and Shichijo, H., Appl. Phys. Lett. 52, 1812 (1988).Google Scholar