Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T10:02:29.807Z Has data issue: false hasContentIssue false

Formation of thallium antimony sulfide and thallium bismuth sulfide thin films by heating chemically deposited multi-layer thin films

Published online by Cambridge University Press:  01 February 2011

Verónica Estrella
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México Temixco, Morelos-62580, México; pkn@cie.unam.mx
M. T. S. Nair
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México Temixco, Morelos-62580, México; pkn@cie.unam.mx
P. K Nair
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México Temixco, Morelos-62580, México; pkn@cie.unam.mx
Get access

Abstract

Antimony sulfide (Sb2S3) and bismuth sulfide (Bi2S3) thin films of 200 nm thickness each were deposited from aqueous baths on glass substrates. Subsequently, thin films of thallium sulfide (Tl2S) with thickness around 120 nm were deposited on to these films from a bath containing thallium nitrate, sodium citrate, sodium hydroxide and thiourea. The multilayer films of Sb2S3-Tl2S, Bi2S3-Tl2S and Bi2S3-Sb2S3-Tl2S, thus produced, were heated in a nitrogen atmosphere around 300°C. XRD studies confirmed the formation of TlSbS2, TlBiS2, Tl4Bi2S5 and TlSb3S5 compounds. Optical band gaps of these materials are 1.85 eV (TlSbS2), 0.15 eV (TlBiS2), and about 1 eV for the composite film (Tl4Bi2S5 + TlSb3S5). In the visible spectral region, the optical absorption coefficients of these materials are about 105 cm-1. Values of dark conductivity are 10-7 Ωcm-1 (TlSbS2), 10-4 Ωcm-1 for TlBiS2 and 10-6 Ωcm-1 for the composite film. All the films are photoconductive.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Madelung, O. (Ed.) Semiconductors other that Group IV Elements and III-V Compounds, Data in Science and Technology, Editor-in-Chief R.Poerschke, Springer-Verlag, Berlin, 1992, p. 149.Google Scholar
2. Chopra, K. L., Kainthla, R. C., Pandya, D. R., Thakoor, A. P. in: Hass, G., Francombe, M.H., Vossen, J. L. (eds.) Physics of Thin Films, Vol 12, Academic Press, New York, 1982, p. 201.Google Scholar
3. Mane, R. S., Lokhande, C. D., Mater. Chem. Phys. 65 (2000) 1.Google Scholar
4. Nair, P. K., Nair, M. T.S., García, V. M., Arenas, O. L., Peña, Y., Castillo, A., Ayala, I. T., Gomezdaza, O., Sánchez, A., Campos, J., Hu, H., Suárez, R., Rincón, M., Sol. Energy Mater. Sol. Cells. 52 (1998) 313.Google Scholar
5. Nair, P. K., García, V. M., Gomezdaza, O. and Nair, M. T.S., Semicond. Sci. Technol. 16 (2001) 885.Google Scholar
6. Nair, P. K., Nair, M. T. S., Semicond. Sci. Technol. 7 (1992) 239.Google Scholar
7. Estrella, V., Mejia, R., Nair, M. T. S., Nair, P. K., Mod. Phys. Lett. B, 15 (2001) 737.Google Scholar
8. Smith, R. A., Semiconductors (2nd. Edition), Cambridge University Press, Cambridge 1978, p. 309.Google Scholar