Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-29T11:12:59.886Z Has data issue: false hasContentIssue false

Four Stable Magnetization States Formed in the Single Layer of GaMnAs Ferromagnetic Film

Published online by Cambridge University Press:  31 January 2011

Sanghoon Lee
Affiliation:
slee3@korea.ac.kr, Korea UNiversity, 5Ga Anamdong, Seoul, Seoul, 136-713, Korea, Republic of
X. Liu
Affiliation:
Xinyu.Liu.30@nd.edu, University of Notre Dame, Physics, Notre Dame, Indiana, United States
J. K. Furdyna
Affiliation:
Jacek.K.Furdyna.1@nd.edu, University of Notre Dame, Physics, Notre Dame, Indiana, United States
Get access

Abstract

A GaMnAs ferromagnetic semiconductor film under compressive strain has strong biaxial in-plane anisotropy, which generates four stable magnetization directions at a zero magnetic field. This feature results in a double switching behavior in the main loop of planar Hall resistance (PHR) spectrum. The minor scan of PHR measurement exhibited staggered asymmetric loops due to the formation of the stable muti-domain structures. We demonstrated the observed four stable PHR states can be served as quaternary logic states for spin memory device.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Daughton, J. M., Pohm, A. V., Fayfield, R. T. and Smith, C. H., J. Phys. D: Appl. Phys. 32 R169 (1999).Google Scholar
2 Zhu, Jian-Gang, Zheng, Youfeng, and Prinz, Gary A., J. Appl. Phys. 87, 6668 (2000).Google Scholar
3 Wang, Jhigang and Nakamura, Yoshihisa, J. Appl. Phys. 79, 6639 (1996).Google Scholar
4 Welp, U., Vlasko-Vlasov, V. K., Liu, X., Furdyna, J. K., and Wojtowicz, T., Phys. Rev. Lett. 90, 167206 (2003).Google Scholar
5 Tang, H. X., Kawakami, R. K., Awschalom, D. D., and Roukes, M. L., Phys. Rev. Lett. 90, 107201 (2003).Google Scholar
6 Holleitner, A. W., Knotz, H., Myers, R. C., Gossard, A. C., and Awschalom, D. D., Appl. Phys. Lett. 85, 5622 (2004).Google Scholar
7 Wang, K. Y., Edmonds, K. W., Campion, R. P., Zhao, L. X., Foxon, C. T., and Gallagher, B. L., Phys. Rev. B 72, 085201 (2005).Google Scholar
8 Tang, H. X., Masmanidis, S., Kawakami, R. K., Awschalom, D. D., and Roukes, M. L., Nature 431, 52 (2004).Google Scholar
9 Okamoto, K., J. Magn. Magn. Mater. 35, 353 (1983).Google Scholar
10 Titova, L. V., Kutrowski, M., Liu, X., Chakarvorty, R., Lim, W. L., Wojtowicz, T., Furdyna, J. K., and Dobrowolska, M.., Phys. Rev. B 72, 165205 (2005).Google Scholar
11 Shin, D. Y., Shin, D.Y., Chung, S. J., Sanghoon Lee, Liu, X., Furdyna, J. K., Phys. Rev. Lett. 98, 047201 (2007)Google Scholar
12 Chung, S.J., Shin, D.Y., Son, Hyunji, Lee, Sanghoon, Liu, X. and Furdyna, J.K., Sol. Sta. Comm. 143, 232 (2007).Google Scholar