Article contents
Fractal and Dendritic Growth of Surface Aggregates
Published online by Cambridge University Press: 10 February 2011
Abstract
The similarity of patterns formed in non-equilibrium growth processes in physics, chemistry and biology is conspicuous and many attempts have been made to discover common mechanisms underlying their growth. The central question in this context is what causes some patterns to be dendritic, as e.g. snowflakes, while others grow fractal (randomly ramified). Here we report a crossover from fractal to dendritic patterns for growth in two dimensions: the diffusion limited aggregation of Ag atoms on a Pt(111) surface as observed by means of variable temperature STM. The microscopic mechanism of dendritic growth can be analyzed for the present system. It originates from the anisotropy of the diffusion of adatoms at corner sites which is linked to the trigonal symmetry of the substrate. This corner diffusion is observed to be active as soon as islands form, therefore, the classical DLA clusters with the hit and stick mechanism do not form. The ideas on the mechanism for dendritic growth have been verified by kinetic Monte-Carlo simulations which are in excellent agreement with experiment.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1996
References
REFERENCES
- 5
- Cited by