Hostname: page-component-6bf8c574d5-h6jzd Total loading time: 0.001 Render date: 2025-02-22T23:41:21.655Z Has data issue: false hasContentIssue false

Free Volume Relaxation in Polycarbonate as a Function of Physical Aging

Published online by Cambridge University Press:  16 February 2011

Kenneth J. Heater
Affiliation:
Duke University, Department of Mechanical Engineering and Materials Science, Durham, North Carolina 27706
Phillip L. Jones
Affiliation:
Duke University, Department of Mechanical Engineering and Materials Science, Durham, North Carolina 27706
Get access

Abstract

Room temperature free volume relaxation of polycarbonate as a function of aging time at 393K has been evaluated via positron annihilation lifetime spectroscopy. Free volume response data were normalized and modeled using an expression of the Williams-Watts form. The process of physical aging is discussed in terms of the trends associated with the resultant characteristic relaxation time constants and distribution of relaxation times.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tant, M.R., and Wilkes, G.L., Polym. Eng. Sci., 21 (14), 8 (1981).Google Scholar
2. Struik, L.C.E., Physical Aging in Amorphous Polymers and Other Materials. (Elsevier Scientific Publishing Co., New York, 1978).Google Scholar
3. Petrie, S.E.B., J. Macromol. Sci., Phys., B12 (2), 225 (1976).Google Scholar
4. Hodge, I.M. and Berens, A.R., Macromol 15, 762 (1982).Google Scholar
5. Flick, J.R., and Petrie, S.E.B., Studies in Physical and Theoretical Chemistry, 10, Walton, A.G., Ed., (Elsevier, New York, 1980), p. 145.Google Scholar
6. Bubeck, R.A., Bales, S.E., and Lee, H.D., Polym. Eng. Sci., 24 (10), 1142 (1984)Google Scholar
7. Bauwens-Crowet, C., and Bauwens, J.C., Polymer, 21, 709 (1986).Google Scholar
8. Petrie, S.E.B., J. Polym. Sci., Part A-2, 10, 1255 (1972).Google Scholar
9. Ali, M.S., and Sheldon, R.P., J. Appl. Polym. Sci., 14, 2619 (1970).Google Scholar
10. Prevorsek, D.C., and DeBona, B.T., J. Macromol. Sci., Phys., B 12, 605 (1981).Google Scholar
11. Turner, D.T., Polymer, 19, 789 (1983).Google Scholar
12. Bubeck, R.A., Bales, S.E., in Order in the Amorphous State of Polymers, Miller, R.L. and Rieke, J.K., Eds., (Plenum, New York, 1987), p. 347.Google Scholar
13. Haward, R.N., J. Macromol. Sci., Rev. Macromol. Chem., C4, 91 (1970).Google Scholar
14. Wang, S.J. and Jean, Y.C., in Positron and Positronium Chemistry: Studies in Physical & Theoretical Chemistry, Schrader, D.M. and Jean, Y.C., Eds., (Elsevier, New York, 1988), p. 57.Google Scholar
15. Brandt, W., Berko, S., and Walker, W., Phys. Rev., 120 (4), 1289 (1960).Google Scholar
16. Brandt, W., Spirn, I., Phys. Rev., 142 (1), 231 (1966).Google Scholar
17. Hill, A.J., Heater, K.J., and Agrawal, C.M., J. Polym. Sci.: Polym Phys. Ed., 28, 387 (1990).CrossRefGoogle Scholar
18. Heater, K.J., and Jones, P.L., submitted J. Polym. Sci., Polym. Phys., June 1990.Google Scholar
19. Puff, W., Computer Physics Communications, 30, 359 (1983).CrossRefGoogle Scholar
20. Hodge, I.M., Macromol, 16, 898 (1983).Google Scholar
21. Hodge, I.M., Macromol, 12, 936 (1986).Google Scholar
22. Williams, G., Watts, D.C., Dev, S.B., and North, A.M., Trans. Faraday Soc., 67, 1323 (1971).Google Scholar
23. Williams, G., and Watts, D.C., Trans. Faraday Soc., 66, 80 (1970).Google Scholar
24. Narayanaswamy, O.S., J. Amer. Ceram. Soc., 54, 491 (1971).Google Scholar