Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T00:02:49.311Z Has data issue: false hasContentIssue false

Freely Accessible Internet Resources for Nanoscience and Nanotechnology Education and Research at Portland State University's Research Servers

Published online by Cambridge University Press:  01 February 2011

Peter Moeck
Affiliation:
pmoeck@pdx.edu, Portland State University, Physics, P.O. Box 751, Portland, Oregon, 97207-0751, United States, 5037254227, 5037252815
Bjoern Seipel
Affiliation:
bseipel@pdx.edu, Portland State University, Physics, Portland, Oregon, 97207-0751, United States
Girish Upreti
Affiliation:
girish@pdx.edu, Portland State University, Physics, Portland, Oregon, 97207-0751, United States
Morgan Harvey
Affiliation:
consultants@pdx.edu, Portland State University, Academic & Research Computing for Instruction and Research Services, Portland, Oregon, 97207-0751, United States
William Garrick
Affiliation:
will@pdx.edu, Portland State University, Academic & Research Computing for Instruction and Research Services, Portland, Oregon, 97207-0751, United States
Get access

Abstract

Because a great deal of nanoscience and nanotechnology relies on crystalline nanometer sized or nanometer structured materials, crystallographers have to provide their specific contributions to the National Nanotechnology Initiative. Here we review two open access internet-based crystallographic databases, the Crystallography Open Database (COD) and the Nano-Crystallography Database (NCD), that store information in the Crystallographic Information File (CIF) format. Having more than ten thousand crystallographic data sets available on the internet in a standardized format allows for many kinds of internet-based crystallographic calculations and visualizations. Examples for this that are dealt with in this paper are interactive crystal structure visualizations in three dimensions (3D) and calculations of theoretical lattice-fringe fingerprint plots for the identification of unknown nanocrystals from their atomic-resolution transmission electron microscopy images.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. International Union of Crystallography Newsletter Vol. 13(3), 2005, www.iucr.org.Google Scholar
2. Fraundorf, P., Qin, W., Moeck, P., and Mandell, E., Making sense of nanocrystal fringes, J. Appl. Phys. 98, 114308–1 (2005); arXiv:cond-mat/0212281 v2 (2005).Google Scholar
3. Moeck, P., Éertík, O., Seipel, B., Groebner, R., Noice, L., Upreti, G., Fraundorf, P., Erni, R., Browning, N. D., Kiesow, A., and Jolivet, J.P., Identifying unknown nanocrystals by fringe fingerprinting in two dimensions & free-access crystallographic databases, Proc. SPIE Vol. 6000, 60000M-1 (2005).Google Scholar
4. Moeck, P., Qin, W., and Fraundorf, P., Towards 3D image-based nanocrystallography by means of transmission electron goniometry, Mat. Res. Soc. Symp. Proc. Vol. 839, P4.3.1 (2005).Google Scholar
5.Electron Microscopy Image Simulation – EMS ON Line, Stadelmann, P., CIME-EPFL; http://cimesg1.epfl.ch/CIOL/.Google Scholar
6.jems, the EMS java version, Stadelmann, P., CIME-EPFL; http://cimewww.epfl.ch/people/stadelmann/jemsWebSite/jems.html.Google Scholar
7.Web Electron Microscopy Applications Software (WebEMAPS), Zuo, J.M. and Mabon, J.C., University of Illinois at Urbana – Champaign; http://emaps.mrl.uiuc.edu/.Google Scholar
8. Moeck, P., Éertík, O., Upreti, G., Seipel, B., Harvey, M., Garrick, W., and Fraundorf, P., Crystal structure visualizations in three dimensions with support from the open access Nano-Crystallography Database, J. Mater. Educ. 28(1) 87 (2006).Google Scholar
9.http://nanocrystallography.research.pdx.edu.Google Scholar
10. Leslie, M. (Editor), Free the Crystals, Science 310, 597 (2005); D. Chateigner, X. Chen, M. Ciriotti, L.M.D. Cranswick, R.T. Downs, A. Le Bail, L. Lutterotti, and A.F.T. Yokochi, COD (Crystallography Open Database) and PCOD (Predicted), Book of Abstracts, XX Congress of the International Union of Crystallography (IUCr), Florence, (Italy), August 23-31, 2005, http://www.iucr2005.it/pdf/17.pdf; A. Le Bail, COD (Crystallography Open Database), Newsletter No. 29, 39 (June 2003), IUCr's Commission on Powder Diffraction, ISSN 1591-9552.Google Scholar
11.http://crystallography.net.Google Scholar
12.http://nanocrystallography.research.pdx.edu/CIF-searchable.Google Scholar
13. Brown, I.D. and McMahon, B., CIF: the computer language of crystallography, Acta Cryst. B58, 317 (2002).Google Scholar
14. Hall, S. and McMahon, B. (editors), International Tables for Crystallography, Vol. G: Definition and exchange of crystallographic data, International Union of Crystallography, Chester, 2005.Google Scholar
15. Boldyrew, A.K. and Doliwo-Dobrowolsky, W.W., Bestimmungstabellen für Kristalle (Οπρεπεππτεπβ κρπβταπποβ), Zentrales Wissenschaftliches Institut der Geologie und Schürfung, Leningrad und Moskau, 1937 und 1939 (in Russian and German).Google Scholar
16. Wang, P., Bleloch, A.L., Falke, U., and Goodhew, P.J., Geometric aspects of lattice contrast visibility in nanocrystalline materials using HAADF STEM, Ultramicroscopy 106, 277 (2006).Google Scholar
17. Boldyrew, A.K. and Doliwo-Dobrowolsky, W.W., Über die Bestimmungstabellen für Kristalle, Zeits. Krist. A 93, 321 (1936) (in German).Google Scholar
18. Faber, J. and Fawcett, T., The Powder Diffraction File: present and future, Acta Cryst. B58, 325 (2002).Google Scholar
19. Terpstra, P. and Codd, L.W., Crystallometry, Academic Press, New York, 1961.Google Scholar