Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T10:13:41.087Z Has data issue: false hasContentIssue false

Frequency- and Temperature-Dependent Ferromagnetic Resonance of Co/CoO Core-Shell Nanoparticles

Published online by Cambridge University Press:  21 March 2011

U. Wiedwald
Affiliation:
Institut für Physik, Universität Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany
J. Lindner
Affiliation:
Institut für Physik, Universität Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany
M. Spasova
Affiliation:
Institut für Physik, Universität Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany
Z. Frait
Affiliation:
Institute of Physics, Academy of Science of the Czech Republic, Na Slovance, 18221 Prague 8, Czech Republic
M. Hilgendorff
Affiliation:
caesar research center, Department of Nanoparticle Technology, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
M. Giersig
Affiliation:
caesar research center, Department of Nanoparticle Technology, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
M. Farle
Affiliation:
Institut für Physik, Universität Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany
Get access

Abstract

Ferromagnetic Resonance experiments are used to investigate the magnetic properties of monodisperse Co/CoO core-shell nanoparticles with diameters of about 10nm. From frequency- dependent measurements at various frequencies of 9-80 GHz the g-value is determined to be 2.13 which suggests an fcc bulk-like environment of the Co atoms within the core of the particles. This result yields a direct measure of the ratio of orbital to spin magnetic moment νLS=0.065. Moreover, from temperature-dependent measurements of the resonance field the anisotropy energy is extracted and found much lower than the hcp bulk value.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wiedwald, U., Spasova, M., Salabas, E.L., Ulmeanu, M., Farle, M., Frait, Z., Rodriguez, A. Fraile, Arvanitis, D., Sobal, N. S., Hilgendorff, M., and Giersig, M., Phys. Rev. B 68, 064424 (2003).Google Scholar
2. Yin, J.S., Wang, Z.L., Phys. Rev. Lett. 79, 2570 (1997).Google Scholar
3. Wiedwald, U., Spasova, M., Farle, M., Hilgendorff, M., and Giersig, M., J. Vac. Sci. Technol. A 19, 1773 (2001).Google Scholar
4. Hilgendorff, M., Tesche, B. and Giersig, M., Aust. J. Chem 54, 497 (2001).Google Scholar
5. Spasova, M., Radetic, T., Sobal, N. S., Hilgendorff, M., Wiedwald, U., Farle, M., Giersig, M., and Dahmen, U., Mat. Res. Soc. Symp. Proc. 721, 195 (2002).Google Scholar
6. Farle, M., Rep. Prog. Phys. 61, 755 (1998).Google Scholar
7. , Wiekhorst, Shevchenko, E., Weller, H., and Kötzler, J., J. Magn. Magn. Mater., to be published; F. Wiekhorst, E. Shevchenko, H. Weller, and J. Kötzler, Phys. Rev. B 67, 224416 (2003).Google Scholar
8. Wiedwald, U., Cerchez, M., Farle, M., Fauth, K., Schütz, G., Zürn, K., Boyen, H.-G., and Ziemann, P., to be published.Google Scholar