Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T07:18:50.540Z Has data issue: false hasContentIssue false

Friction Behaviour of Multilayered Graphene against Steel

Published online by Cambridge University Press:  01 March 2016

A. Banerji
Affiliation:
Mechanical, Automotive and Materials Engineering, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada.
S. Bhowmick
Affiliation:
Mechanical, Automotive and Materials Engineering, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada.
M.J. Lukitsch
Affiliation:
Chemical Sciences and Materials Systems Laboratory, General Motors R&D Center, 30500 Mound Road, Warren, MI 48090-9055, U.S.A.
A.T. Alpas
Affiliation:
Mechanical, Automotive and Materials Engineering, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada.
Get access

Abstract

Frictional behaviour of multilayered graphene was studied in air with different relative humidity (RH) levels (10–52% RH). Pin-on-disk type sliding tests were performed and the running-in and steady state coefficient of friction (COF) values were measured against M2 tool steel counterface. On increasing the RH, multilayered graphene showed a reduction in steady state COF from 0.11 at 10% RH to 0.08 at 52% RH. The low steady state COF values observed in graphene could be attributed to the transfer layer formed on the M2 tool steel counterface. A sliding-induced structural change was observed in graphene transfer layers which could have facilitated the graphitic transfer layer formation. The multilayered graphene showed a lower steady state COF values at all RH compared to non-hydrogenated diamond-like carbon (NH-DLC) which recorded a steady state COF of 0.47 at 10% RH and 0.25 at 52% RH.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Geim, A.K. and Novoselov, K.S., Nature Materials 6, 183191 (2007).CrossRefGoogle Scholar
Lee, C., Li, Q., Kalb, W., Liu, X.-Z., Berger, H., Carpick, R. W. and Hone, J., Science 328, 7680 (2010).CrossRefGoogle Scholar
Kim, K.S., Lee, H.J., Lee, C., Lee, S.K., Jang, H., Ahn, J.H., Kim, J.H. and Lee, H.J., ACS Nano 5, 51075114 (2011).CrossRefGoogle Scholar
Berman, D., Erdemir, A. and Sumant, A.V., Carbon 54, 454459 (2013).CrossRefGoogle Scholar
Bhowmick, S., Banerji, A. and Alpas, A.T., Carbon 87, 374384 (2015).CrossRefGoogle Scholar
Liu, Y., Erdemir, A. and Meletis, E.I., Surf. Coat. Technol. 82, 4856 (1996).CrossRefGoogle Scholar
Bobzin, K., Brögelmann, T., Stahl, K., Michaelis, K., Mayer, J. and Hinterstoißer, M., Wear 328-329, 217228 (2015).CrossRefGoogle Scholar
Ronkainen, H., Varjus, S. and Holmberg, K., Wear 222, 120128 (1998).CrossRefGoogle Scholar
Bhowmick, S. and Alpas, A.T., Int. J. Mach. Tools Manuf. 48 (12), 802814 (2008).CrossRefGoogle Scholar
Bhowmick, S. and Alpas, A.T., Int. J. Mach. Tools Manuf. 48 (7), 802814 (2008).CrossRefGoogle Scholar
Bhowmick, S. and Alpas, A.T., Surf. Coat. Technol. 205, 53025311 (2011).CrossRefGoogle Scholar
Bhowmick, S. and Alpas, A.T., J. Manuf. Sci. Eng. 135, 061019 (2013).CrossRefGoogle Scholar
Bhowmick, S., Lukitsch, M.J. and Alpas, A.T., J. Mater. Process. Technol. 210, 21422153 (2010).CrossRefGoogle Scholar
Erdemir, A., Surf. Coat. Technol. 146–147, 292297 (2001).CrossRefGoogle Scholar
Konca, E., Cheng, Y.T., Dasch, J.M. and Alpas, A.T., Wear 259, 795799 (2005).CrossRefGoogle Scholar
Banerji, A., Bhowmick, S. and Alpas, A.T., Surf. Coat. Technol. 241, 93104 (2014).CrossRefGoogle Scholar
Bhowmick, S., Banerji, A. and Alpas, A.T., Wear 330-331, 261271 (2015).CrossRefGoogle Scholar
Park, C.H., Giustino, F., Cohen, M.L. and Louie, S.G., Nano Lett. 8, 42294233 (2008).CrossRefGoogle Scholar
Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S. and Geim, A. K., Phys. Rev. Lett. 97, 187401 (2006).CrossRefGoogle Scholar
Malard, L.M., Pimenta, M.A., Dresselhaus, G. and Dresselhaus, M.S., Phys. Rep. 473, 5187 (2009).CrossRefGoogle Scholar
Cabrera-Sanfelix, P., and Darling, G.R., J. Phys. Chem. C 111 (49) (2007) 1825818263.CrossRefGoogle Scholar
Bhowmick, S., Sen, F.G., Banerji, A. and Alpas, A.T., Surf. Coat. Technol. 267, 2131 (2015).CrossRefGoogle Scholar
Bhowmick, S., Banerji, A. and Alpas, A.T., Surf. Coat. Technol. 260, 290302 (2014).CrossRefGoogle Scholar
Konicek, A.R., Grierson, D.S., Sumant, A.V., Friedmann, T.A., Sullivan, J.P., Gilbert, P.U.P.A., Sawyer, W.G. and Carpick, R.W., Phys. Rev. B 85, 155448 (2012).CrossRefGoogle Scholar
Qi, Y., Konca, E. and Alpas, A.T., Surf. Sci. 600, 29552965 (2006).CrossRefGoogle Scholar