Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T10:05:44.443Z Has data issue: false hasContentIssue false

From Solid State Diffusion to Configurational Kinetics

Published online by Cambridge University Press:  10 February 2011

G. Martin
Affiliation:
CEA-Saclay, CEREM, Section de Recherches de Métallurgie Physique, 91191 Gif-sur-Yvette Cedex, France; martin@srmpl2.saclay.cea.fr
M. Athènes
Affiliation:
CEA-Saclay, CEREM, Section de Recherches de Métallurgie Physique, 91191 Gif-sur-Yvette Cedex, France
C. Desgranges
Affiliation:
CEA-Saclay, CEREM, Section de Recherches de Métallurgie Physique, 91191 Gif-sur-Yvette Cedex, France
M. Nastar
Affiliation:
CEA-Saclay, CEREM, Section de Recherches de Métallurgie Physique, 91191 Gif-sur-Yvette Cedex, France
F. Soisson
Affiliation:
CEA-Saclay, CEREM, Section de Recherches de Métallurgie Physique, 91191 Gif-sur-Yvette Cedex, France
Get access

Abstract

A single model is proposed to describe the cohesive energy and the vacancy jump frequencies as a function of the alloy configuration at the atomic level. The very same model therefore yields both equilibrium and kinetic properties, close and far away from equilibrium. The model is handled at two levels of approximation: Monte Carlo techniques and mean-field type approximations. The model yields equilibrium properties (including the transport coefficients and complex diffusion mechanisms in ordered compounds close to equilibrium) as well as the kinetic path for phase separation, with or without ordering. This allows to identify specific effects of the vacancy diffusion mechanism on the kinetic path for alloy decomposition. Here, we summarise the main results of the above approach.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.-a Fontaine, D. de, Solid State Physics 34 73 (1979); -b A.G. Khachaturyan, Theory of Structural Transitions in Solids, John Wiley, New York, 1983; -c F. Ducastelle, Order and Phase Stability in Alloys, North Holland, Amsterdam, 1991.Google Scholar
2. Morita, Tohru, Suzuki, Masuo, Wada, Koh and Kaburagi, Makoto eds, Foundations and Applications of Cluster Variation Method and Path Probability Method, Progress of Theoretical Physics Suppl. 115 (1994).Google Scholar
3.-a Umantsev, A. and Olson, G.B., Scripta Met.et Mater. 29 1135 (1993); -b J.E. Morral and G.R. Purdy, Scripta Met.et Mater. 30 905 (1994).Google Scholar
4. Chen, L.Q., Mod. Phys. Lett. 7 1857 (1993).Google Scholar
5. Binder, K., Monte Carlo Methods in Statistical Physics, Springer, Berlin, 1986.Google Scholar
6.-a Allnatt, A.R. and Lidiard, A.B., Atomic Transport in Solids, Cambridge University Press, Cambridge, 1993; -b A.L. Laskar, J.L. Bocquet, G. Brebec and C. Monty, Diffusion in Materials,(NATO ASI E179) Kluver Academic Publisher, Dodrecht (1990); -c DIMAT'96, Defect and Diffusion Forum 143-147 (1997).Google Scholar
7. Dobretsov, V.Yu and Vaks, V.G., J. Phys. Condens Matter 10 2261 (1998).Google Scholar
8.-a Young, W.M. and Elcock, E.N., Proc. Phys. Soc. 89 735 (1966); -b Y. Limoge and J.L. Bocquet, Acta Metall. 44 4739 (1997).Google Scholar
9. Athènes, M., Bellon, P. and Martin, G., Phil. Mag. A76 565 (1997).Google Scholar
10. Allnatt, A.R., J. Phys. C15, 5605 (1982).Google Scholar
11.-a Bocquet, J.L., CEA report R-4565; -b H.J. de Bruin, H. Bakker and L.P. van der Mey, Phys. Stat. Sol. b82 581 (1977); -c G.E. Murch and S.J. Rothman, Phil. Mag. A43 229 (1981); -d G.E. Murch, Phil. Mag. A46 151 (1982); -e A.R. Allnatt and E.L. Allnatt, Phil. Mag. A49 625 (1984); -f G.E. Murch et al. this volume.Google Scholar
12. Nastar, M. and Dobretsov, V.Yu, to be published.Google Scholar
13. Sepiol, B. et al. preprint.Google Scholar
14. Athènes, M., Bellon, P. and Martin, G., and Haider, F., Acta Met. 44 4739 (1996).Google Scholar
15. Allen, S.M. and Cahn, J.W., Acta Met. 24 425 (1975).Google Scholar
16. Athènes, M., CEA report R-5774 (1997).Google Scholar
17. Soisson, F.. Barbu, A. and Martin, G., Acta Metal. and Mater., 44 3789 (1996).Google Scholar
18.-a Martin, G., Phys. Rev., B41. 2279 (1990); -b K.D. Belashchenko and V.G. Vaks, J. Phys.: Condens. Matter 10 1965 (1998).Google Scholar
19. Dobretsov, V.Yu., Martin, G., Soisson, F. and Vaks, V.G., Europhys Letters 31 417 (1995).Google Scholar
20. Dobretsov, V.Yu., Vaks, V.G. and Martin, G., Phys. Rev., B54. 3227 (1996-I).Google Scholar
21. Dobretsov, V. Yu and Vaks, V.G., J. Phys.: Condens Matter 10 2275 (1998).Google Scholar
22. Soisson, F., Bellon, P., Martin, G., Phys. Rev. B46, 11332 (1992).Google Scholar
23. Maugis, P. and Martin, G., Phys. Rev. B49 11580 (1994).Google Scholar
24. Martin, G., Phys. Rev. B50 12362 (1994).Google Scholar
25. Desgranges, C., Defoort, F., Poissonnet, S. and Martin, G., Defect and Diffusion Forum 143–147 603 (1997); CEA report, in press.Google Scholar