Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T02:57:10.248Z Has data issue: false hasContentIssue false

The Fullerene Neighbours

Published online by Cambridge University Press:  15 February 2011

Z. Slanina
Affiliation:
Department of Chemistry, National Chung-Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan On a leave of absence from the Academy of Sciences of the Czech Repubic, Prague
M.-L. Sun
Affiliation:
Department of Chemistry, National Chung-Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
S.-L. Lee
Affiliation:
Department of Chemistry, National Chung-Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan
L. Adamowicz
Affiliation:
Departnment of Chemistry, The University of Arizona, Tucson, AZ 85721, USA
Get access

Abstract

Semiempirical quantum-chemical calculations are reported for the fullerenic structures C60, Si60, Ge60, N60; B36N24, B36P24, A136N24, A136P24; and various BnNn A new route towards B/N clusters is considered, being based on squares and hexagons. The pattern always requires six squares. The route can produce species of similar or even higher stability comparing to the conventional pentagon/hexagon pattern. Four particular stoichiometries emerge from the available AM1 computations: B12N12, B28N28, B36N36, and B36 N24.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Curl, R. F. and Smalley, R. E., Science 242, 1017 (1988).Google Scholar
2. Kroto, H., Science, 242, 1139 (1988).Google Scholar
3. Weltner, W. Jr. and Zee, R. J. van, Chem. Rev. 89, 1713 (1989).Google Scholar
4. Raghavachari, K., J. Chem. Phys. 84, 5672 (1986).Google Scholar
5. Katircioglu, S. and Erkoc, S., Chem. Phys. Lett. 184, 118(1991).Google Scholar
6. Jelski, D. A., Swift, B. L., Rantala, T. T., Xia, X., George, T. F., J. Chem. Phys. 95, 8552 (1991).Google Scholar
7. arrold, M. F., Science, 252,1085 (1991).Google Scholar
8. Lange, T. and Martin, T. P., Angew. Chem., Int. Ed. Engl., 31,172 (1992).Google Scholar
9. Zybill, C., Angew. Chem., Int. Ed. Engl. 31, 173 (1992).Google Scholar
10. Jarrold, M. F. and Bower, J. E., J. Chem. Phys., 96, 9180 (1992).Google Scholar
11. Jelski, D. A., Bowser, J. R., Xia, X., Gao, J., George, T. F., Cluster, J. Sci. 4, 173 (1993).Google Scholar
12. Nagase, S., Pure Appl. Chem. 65, 675 (1993).Google Scholar
13. Nagase, S. and Kobayashi, K., Fullerene Sci. Technol. 1, 299 (1993).Google Scholar
14. Piqueras, M. C., Crespo, R., Orti, E., Tomas, F., Chem. Phys. Lett. 213, 509 (1993).Google Scholar
15. Piqueras, M. C., Crespo, R., Orti, E., Tomas, F., Synth. Met. 61, 155 (1993).Google Scholar
16. Slanina, Z., Lee, S.-L., Kobayashi, K., Nagase, S. J. Mol. Struct. (THEOCHEM) 312, 175 (1994).Google Scholar
17. Sugano, S., Microcluster Physics, (Springer-Verlag, Berlin, 1991).Google Scholar
18. Bliznyuk, A. A., Shen, M., Schaefer, H. F. III, Chem. Phys. Let. 198, 249 (1992)Google Scholar
19. Chen, C., Sun, K. C., Lu, L. H., Chin, J.. Chem. Soc. 40, 199 (1993).Google Scholar
20. Guo, T., Jin, C. M., Smalley, R. E., J. Phys. Chem. 95, 4948 (1991).Google Scholar
21. Lipscomb, W. N. and Massa, L., Inorg. Chem. 31, 2297 (1992).Google Scholar
23. Placa, S. J. La, Roland, P. A., Wynne, J. L., Chem. Phys. Lett. 190, 162 (1992).Google Scholar
24. Xia, X., Jelski, D. A., Bowser, J. R., George, T. F., J. Am. Chem. Soc. 114, 6493 (1992).Google Scholar
25. Bowser, J. R., Jelski, D. A., George, T. F., Inorg. Chem. 31,154 (1992).Google Scholar
26. Jensen, F. and Toftlund, H., Chem. Phys. Lett. 201, 89 (1993).Google Scholar
27. Tang, A. C., Li, Q. S., Liu, C. W., Li, J., Chem. Phys. Lett. 201, 465 (1993).Google Scholar
28. Pradeep, T., Vijayakrishnan, V., Santra, A. K., Rao, C. N. R., J. Phys. Chem. 95, 10564 (1991).Google Scholar
29. Rao, C. N. R., Pradeep, T., Seshadri, R., Govindaraj, A., Ind. J. Chem. A 31, 27 (1992).Google Scholar
30. Wang, B.-C., Yu, L.-J., Wang, W.-J, J. Chin. Chem. Soc. 40, 497 (1993).Google Scholar
31. Locke, I. W., Darwish, A. D., Kroto, H. W., Prassides, K., Taylor, R., Walton, D. R. M., Chem. Phys. Lett. 225, 186 (1994).Google Scholar
32. Behrman, E. C., Foehrweiser, R. K., Myers, J. R., French, B. R. and Zandler, M. E., Phys. Rev. A 49, R1543 (1994).Google Scholar
33. Kaxiras, E., Jackson, K., Pederson, M. R., Chem. Phys. Lett. 225, 448 (1994).Google Scholar
34. Knight, L. B. Jr., Hill, D. W., Kirk, T. J., Arrington, C. A., J. Phys. Chem. 96, 555 (1992).Google Scholar
35. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., Stewart, J. J. P., J. Am. Chem. Soc. 107, 107 (1985).Google Scholar
36. Hehre, W. J., Burke, L. D., Schusterman, A. J., SPARTAN, (Wavefunction, Inc., Irvine, 1993).Google Scholar
37. Stewart, J. J. P., MOPAC 5.0, (QCPE 455, Indiana University, 1990).Google Scholar
38. Frisch, M. J., Trucks, G. W., Head-Gordon, M., Gill, P. M. W., Wong, M. W., Foresman, J. B., Johnson, B. G., Schlegel, H. B., Robb, M. A., Replogle, E. S., Gomperts, R., Andres, J. L., Raghavachari, K., Binkley, J. S., Gonzalez, C., Martin, R. L., Fox, D. J., Defrees, D. J., Baker, J., Stewart, J. J. P., Pople, J. A., GAUSSIAN 92, Revision C (Gaussian, Inc., Pittsburgh, 1992).Google Scholar
39. Pearson, R. G., Acc. Chem. Res. 26, 250 (1993).Google Scholar
40. Parr, R. G. and Zhou, Z., Acc. Chem. Res. 26, 256 (1993).Google Scholar
41. Slanina, Z., Martin, J. M. L., François, J.-P., Gijbels, R., Chem. Phys. Lett. 201, 54 (1993).Google Scholar
42. Slanina, Z., Martin, J. M. L., François, J.-P., Gijbels, R., Chem. Phys. 178, 77 (1993).Google Scholar
43. Martin, J. M. L., Slanina, Z., François, J.-P., Gijbels, R., Mol. Phys. 82, 155 (1994).Google Scholar
44. Rubio, A., Corkill, J. L., Cohen, M. L., Phys. Rev. B 49, 5081 (1994).Google Scholar