Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T10:31:22.218Z Has data issue: false hasContentIssue false

Functional Metamaterials Based on Mesoscale Gold Sponges, Particulate Aggregates, and Their Composites with Dielectric Materials

Published online by Cambridge University Press:  26 February 2011

Michael Cortie
Affiliation:
michael.cortie@uts.edu.au, University of Technology Sydney, Institute for Nanoscale Technology, PO Box 123, Broadway, Sydney 2007, N/A, Australia
Abbas Maaroof
Affiliation:
abbas.maaroof@uts.edu.au, University of Technology Sydney, Institute for Nanoscale Technology, Sydney, 2007, Australia
Geoff B Smith
Affiliation:
geoff.smith@uts.edu.au, University of Technology Sydney, Institute for Nanoscale Technology, Sydney, 2007, Australia
Get access

Abstract

The optical properties of some nanoscale composites may deviate from that expected from a simple law of mixture of their individual components. In these cases the resulting structure can be considered to be a type of “metamaterial”. Here we explore some of the possibilities for nanoscale composite structures comprised of gold and VO2 – the latter being a functional material that undergoes a reversible insulator to metallic phase transition at 68°C. Two microstructures are examined: aggregates of gold nanoparticles surrounded by VO2 as the continuous phase, and its geometric inverse, mesoporous gold sponge with discontinuous VO2 inclusions. A composite, right-angled parallelepiped measuring 40×100×100 nm is taken as representative of the mixture, and calculations of the optical properties performed using the discrete dipole approximation code of Draine and Flatau. The VO2 matrix strongly attenuates the dipole-dipole plasmon resonance of the gold structure, and thermochromic switching of the remaining plasmon resonance occurs

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morin, F. J., Physical Review Letters 3, 34 (1959).Google Scholar
2. Biermann, S., Poteryaev, A., Lichtenstein, A. I., andGeorges, A., Physical Review Letters 94, 026404 (2005).Google Scholar
3. Cavanna, E., Segaud, J. P., andLivage, J., Mater. Res. Bull. 34, 167 (1999).Google Scholar
4. Maaza, M., Nemraoui, O., Sella, C., andBeye, A. C., Gold Bulletin 38, 100 (2005).Google Scholar
5. Cortie, M. B., Maaroof, A. I., andSmith, G. B., Gold Bulletin 38, 15 (2005).Google Scholar
6. Cortie, M. B., Maaroof, A., Smith, G. B., andNgoepe, P., Current Applied Physics 6, 440 (2006).Google Scholar
7. Erlebacher, J., Aziz, M. J., Karma, A., Dimitrov, N., andSieradzki, K., Nature 410, 450 (2001).Google Scholar
8. Maaroof, A. I., Cortie, M. B., andSmith, G. B., Journal of Applied Optics A: Pure and Applied Optics 7, 303 (2005).Google Scholar
9. Maaroof, A., Cortie, M. B., andSmith, G. B., Physica B, submitted (2007).Google Scholar
10. Draine, B. T. andFlatau, P. J., J. Opt. Soc. Am. A 11, 1491 (1994).Google Scholar
11. Draine, B. T. andFlatau, P. J., User Guide for the Discrete Dipole Approximation Code DDSCAT 6.1, 2004).http://arxiv.org/abs/astro-ph/0309069 Google Scholar
12. Smith, G. B., Maaroof, A. I., andGentle, A., Optics Communications, in press (200x).Google Scholar
13. Gentle, A., Maaroof, A. I., andSmith, G. B., J. of Nanotechnology, in press.Google Scholar
14. Peceros, K. E., Xu, X., Bulcock, S. R., andCortie, M. B., Journal of Physical Chemistry B 109, 21516 (2005).Google Scholar