Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T13:23:13.062Z Has data issue: false hasContentIssue false

Functional Phosphate Alkoxysilanes for Facilitated Transport Membrane Materials

Published online by Cambridge University Press:  10 February 2011

N. Hovnanian
Affiliation:
LMPM, UMR 9987 CNRS, UMII, ENSCM, 8 rue de I'Ecole Normale, 34053 Montpellier, Francesmaihi@crit I.univ-montp2.fr
M. Smaihi
Affiliation:
LMPM, UMR 9987 CNRS, UMII, ENSCM, 8 rue de I'Ecole Normale, 34053 Montpellier, Francesmaihi@crit I.univ-montp2.fr
A. Cardenas
Affiliation:
LMPM, UMR 9987 CNRS, UMII, ENSCM, 8 rue de I'Ecole Normale, 34053 Montpellier, Francesmaihi@crit I.univ-montp2.fr Laboratorio FIRP, Facultad de Ingenieria,Universidad de Los Andes, Mérida, Venezuela
C. Guizard
Affiliation:
LMPM, UMR 9987 CNRS, UMII, ENSCM, 8 rue de I'Ecole Normale, 34053 Montpellier, Francesmaihi@crit I.univ-montp2.fr
Get access

Abstract

Sol-gel processing of heteropolysiloxanes containing phosphate groups has been investigated for potential applications in the synthesis of facilitated transport solid membrane. The co-hydrolysis-condensation of SiP (diethylphosphatoethyltriethoxysilane) with each of the three following alkoxysilanes: tetraethoxysilane (TEOS), methyltrimethoxysilane (MTMOS) and C6H4[C(O)NH(CH2)3Si(CH3)(OEt)2] 2−1,4 (abbreviated P1) have been studied. The gels produced have been characterized by 29Si and 31P MAS NMR spectroscopy to determine Ihe chemical structure of these new materials. The connectivity and the hydrophilic properties of the materials are controlled by the chemical nature of the alkoxysilanes and the SiP concentration. Dense flexible membranes have been obtained by tape casting and have been used for the facilitated transport of Ni++ ions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Neplenbroek, A.M., Bargeman, D. and Smolders, C.A., Desalination, 79, p.303 (1990).Google Scholar
2. Yoshikawa, M., Shudo, S., Sanui, K. and Ogata, N., J. Membrane Sci., 26, p 51 (1986). T. Fyles, Polymer membrane for proton driven ion transport, US Pat. 4,906,376, (1990). L.M. Dulyea, T.M. Fyles and G D. Roberton, J. Membrane Sci., 34, p. 87 (1987).Google Scholar
3. Lacan, P., Guizard, C., Gall, P. Le, Wettling, D. Cot, L., J. Membrane Sci., 100, p. 99 (1995).Google Scholar
4. Guizard, C. and Lacan, P., New J. Chem., 18, pp. 10971107 (1994).Google Scholar
5. WIN-NMR, Brüker Analytische Messtechnik GmbH, Wikingerstr. 13, W-75000 Karlruhe, Germany.Google Scholar
6. Colman, C.F. and Moddy, J.W., Solvent Extraction Revs., 1, pp. 6391 (1971).Google Scholar
7. Schrotter, J.C., Cardenas, A., Smaihi, N I. and Hovnanian, N., J. Sol-Gel Sci. and Tech., 4, pp. 195204 (1995).Google Scholar
8. Cardenas, A., Hovnanian, N. and Smnaihi, M., J. Applied Polym. Sci., in press.Google Scholar
9. Ernst, L., Org. Magn. Reson., 9, pp. 3543 (1977).Google Scholar