Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T14:21:01.761Z Has data issue: false hasContentIssue false

Fundamental Materials-Issues involved in the Growth of GaN by Molecular Beam Epitaxy

Published online by Cambridge University Press:  21 February 2011

N. Newman
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA, 94720
T.C Fu
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA, 94720
X. Liu
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA, 94720
Z. Liliental-Weber
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA, 94720
M. Rubin
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA, 94720
J. S. Chan
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA, 94720
E. Jones
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA, 94720
J. T. Ross
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA, 94720
I. Tidswell
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA, 94720
K. M. Yu
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA, 94720
N. Cheung
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA, 94720
E. R. Weber
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA, 94720
Get access

Abstract

Gallium nitride is one of the most promising materials for ultraviolet and blue light-emitting diodes and lasers. Both Molecular Beam Epitaxy (MBE) and Metal-Organic Chemical Vapor Deposition (MOCVD) have recently made strong progress in fabricating high-quality epitaxial GaN thin films. In this paper, we review materials-related issues involved in MBE growth. We show that a strong understanding of the unique meta-stable growth process allows us to correctly predict the optimum conditions for epitaxial GaN growth. The resulting structural, electronic and optical properties of the GaN films are described in detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Newman, N., Ross, J. and Rubin, M., Appl. Phys. Lett. 62, 1242 (1993); Appl Phys. Lett. 63, 424 (1993).Google Scholar
2. Rubin, M., Newman, N., Chan, J. S., Fu, T. C. and Ross, J. T., Appl. Phys. Lett. 64, 64 (1994).Google Scholar
3. Perlin, P., Gorczyca, J., Christensen, N. E., Grzegory, I., Teisseyve, H. and Suski, T., Phys. Rev. B 45, 13307 (1992);Google Scholar
Karpinski, J., Jun, J. and Porowski, S., Journal of Crystal Growth 66, 1 (1984).Google Scholar
4. Van Vechton, J. A., Phys. Rev. B 4, 1479 (1973).Google Scholar
5. Munir, Z.A. and Searcy, A. W., J. Chem. Phys. 42, 4223 (1968).Google Scholar
6. Brice, D. K., Tsao, J. Y. and Picraux, S. T., Nucleur Instruments and Methods in Physics Research B 44, 68(1989).Google Scholar
7. Paisley, M. J. and Davis, R. F., J. of Crystal Growth 127, 136 (1993).Google Scholar