Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T10:18:11.851Z Has data issue: false hasContentIssue false

Gallium Removal from Weapons-Grade Plutonium and Cerium Oxide Surrogate by a Thermal Technique

Published online by Cambridge University Press:  10 February 2011

YoungSoo Park
Affiliation:
Materials Science and Technology Division, Los Alamos Nalional Laboratory, Los Alamos, NM, U.S.A. 87545
David G. Kolman
Affiliation:
Materials Science and Technology Division, Los Alamos Nalional Laboratory, Los Alamos, NM, U.S.A. 87545
Hisham Ziraffe
Affiliation:
Materials Science and Technology Division, Los Alamos Nalional Laboratory, Los Alamos, NM, U.S.A. 87545
Carol Haertling
Affiliation:
Materials Science and Technology Division, Los Alamos Nalional Laboratory, Los Alamos, NM, U.S.A. 87545
Darryl P. Butt
Affiliation:
Materials Science and Technology Division, Los Alamos Nalional Laboratory, Los Alamos, NM, U.S.A. 87545
Get access

Abstract

This paper describes the process of gallium removal from Ga2O3 -doped CeO2−x a surrogate for weapons-grade PuO2−x. Gallium is removed from the surrogate feedstock material using thermal techniques. An Ar-6% H, gas was used in order to reduce the oxide to gaseous Ga2O. Experimental results were shown in the temperature range of 600°C to 1200°C as a function of time and sample geometry. The results to date have shown that CeO2−x is a very good surrogate for PuO2−x.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lide, D. R., Handbook of Cheinisyrauned Physics, 77th ed. (CRC Press, New York, 1996-1997).Google Scholar
2. Wilson, D. F., Distefano, J. R., King, J. F., Manneschmidt, E. T., and Strizak, J. P., Oak Ridge National Laboratory report ORNL/TM- 13505, 1997.Google Scholar
3. Luebber, P. R., Michayd, W. F., and Chopra, O. K., Argonne National Laboratory report ANL-93/31, 1993.Google Scholar
4. Lindemer, T. B., Oak Ridge National Laboratory report ORNL/MD/LTR-38, 1995.Google Scholar
5. Trellude, H. R., Baros, T., Blair, H. T., Buska, J. J., Butt, D. P., Chiester, K., Demuth, S. F., Eaton, S. L., Havrilla, G. J., Hanrahan, R. J., James, C. A., Kolman, D. G., Mason, R. E., Park, Y., Stan, M., Steele, J. H. Jr., Voss, S. S., Wallace, T. C. Sr., and Worley, C. G., Los Alamos National Laboratory report LA-UR-97-4423, 1997.Google Scholar
6. Morss, L. R. and Fuger, J., Transuraniun Elements(American Chemical Society, Washington, DC, 1992).Google Scholar
7. Nakamura, A., J. Nucl. Mater. 201, 17 (1993).Google Scholar
8. Toffsorensen, O., J. Solid State Chem., 18, 217 (1976).Google Scholar
9. Guminski, C., Z. Metallkd. 81, 105110 (1990).Google Scholar
10. Kofstad, Per, Nonstoichiometr,, Diffusion, and Electrical Conductivity in Binay, Metal Oxides, (Wiley-Interscience, New York, 1972).Google Scholar
11. Smith, J. L., Fisk, Z., and Hecker, S. S., Physica 130B, 151 (1985)Google Scholar
12. Park, Y. S., Taylor, T. N., Antencio, A., and Butt, D. P., Ceramic Transactions, 93, 69–78, (American Ceramic Society, Westerville, OH, 1999).Google Scholar
13. Butt, D. P., Park, Y. S., and Taylor, T. N., J. Nucl. Mater. 264 7 (1999).Google Scholar
14. Samsonov, G. V., The Oxide Handbook, (IFI/Plenum Data Corporation, 1973)Google Scholar
15. Laachir, A., Perrichon, V., Badri, A., Lamontte, J., Catherine, E., Lavalley, J. C., Fallah, J. E., Hilaire, L., Normand, F. I., Quéméré, E., Sauvion, G. N., and Touret, O., J. Chem. Soc. Faraday Trans. 87 [10] 1601 (1991)Google Scholar