Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T01:10:45.806Z Has data issue: false hasContentIssue false

Gas Phase Decomposition of an Organometallic Chemical Vapor Deposition Precursor to Ain: [A1(CH3)2NH2]3

Published online by Cambridge University Press:  25 February 2011

Carmela C. Amato
Affiliation:
Rensselaer Polytechnic Institute, Dept. of Chemistry, Troy, NY 12180
John B. Hudson
Affiliation:
Rensselaer Polytechnic Institute, Dept. of Materials Engineering, Troy, NY 12180
Leonard V. Interrante
Affiliation:
Rensselaer Polytechnic Institute, Dept. of Chemistry, Troy, NY 12180
Get access

Abstract

A CVD reactor has been coupled to a molecular beam apparatus in order to study the gas phase decomposition of an organometallic precursor to AIN, tris-dimethylaluminum amide, [(CH3)2AINH2]3. The onset of decomposition occurs at a reactor temperature of 125°C. By 300°C, all mass spectral signals due to precursor have disappeared. With the addition of helium as a carrier gas in the CVD process, the temperature at which all precursor signals disappear is raised to 400°C. The evolution of methane accompanies the precursor decomposition. Mass spectra of the precursor and its deuterated analogue, [(CH3)2 AIND2]3, obtained between 50°C and 90°C, offer support for the existence of trimer-dimer-monomer equilibria in this temperature range.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Interrante, L. V., Carpenter, L. E., Whitmarsh, C., Lee, W. In Better Ceramics Through Chemistry. III. edited by Brinker, C. J., Ulrich, D. R., and Clark, D. E. (Mater. Res. Soc. Proc. 73, Pittsburgh, PA 1986) pp 359366.Google Scholar
2. Interrante, L. V., Lee, W., McConnell, M., Lewis, N., Hall, E., J. Electrochem. Soc. 136, 472 (1989).Google Scholar
3. Work of E. Wiberg, reported in: Bahr, G., In Inorganic Chemistry. Part 2. edited by Klemm, W. (FIAT Review of World War II German Science, Vol. 24, 1948), p. 155.Google Scholar
4. Sauls, F. C., Interrante, L. V., Jiang, Z., Inorg. Chem. 29, 2989 (1990).Google Scholar
5. Interrante, L. V., Sigel, G., Garbauskas, M., Hejna, C., Slack, G. A., Inorg. Chem. 28, 252 (1989).Google Scholar
6. Lappert, M. F., (F. R. S.), Power, P. P., Sauger, A. R., Srivistava, R. C., Metal and Metalloid Amides; (Ellis Horwood Publishers, West Sussex, England, 1980), pp. 99114.Google Scholar
7. Lyman, M. M., Interrante, L. V., Patterson, C. H., Messmer, R. P., submitted for publication in Inorg. Chem.Google Scholar
8. Hitchcock, P. B., McLaughlin, G. M., Smith, J. D., Thomas, K. M., J. Chem. Soc., Chem. Comm., 934 (1973).Google Scholar
9. Ehrlich, R., Young, A. R. II, Lichstein, B. M., Perry, D. D., Inorg. Chem. 3, 628 (1964).Google Scholar
10. Beachley, O. T. Jr., Inorg. Chem. 20, 2825 (1981).Google Scholar
11. Beachley, O. T. Jr., Tessier-Youngs, C., Inorg. Chem. 18, 1388 (1979).Google Scholar
12. Amato, C. C., Hudson, J. B., Interrante, L. V. in Chemical Vapor Deposition of Refractory Metals and Ceramics. edited by Besmann, T., Gallois, B. M. (Mater. Res. Soc. Proc. 168. Pittsburgh, PA 1990) pp. 119124.Google Scholar