Hostname: page-component-6bf8c574d5-9nwgx Total loading time: 0 Render date: 2025-02-22T17:04:24.314Z Has data issue: false hasContentIssue false

Generalized Activation Energy Spectrum Theory: A New Approachfor modeling Structural Relaxation in Amorphous Solids

Published online by Cambridge University Press:  15 February 2011

Jung H. Shin
Affiliation:
Thomas Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena CA 91125
Harry A. Atwater
Affiliation:
Thomas Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena CA 91125
Get access

Abstract

A general approach to the dynamics of structural relaxation in amorphoussolids is developed. A form of the recombination kinetics of defects ischosen which removes the ad hoc assumption made in previoustheories that defects recombine only with others of identical activationenergy. The generalized theory is tested quantitatively by modelling thestructural relaxation of amorphous silicon, and comparing the results withthe experimental data on structural relaxation. It is found that thegeneralized theory is necessary in order to accurately describe thetime-resolved relaxation data. The generalized theory is also applied toestimate the effect of irradiation on the nucleation kinetics of crystalsilicon, and is found to agree well with experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Gibbs, M. R. J., Evetts, J. E., and Leake, T.A., J. Mater. Sci. 18, 278 (1983).Google Scholar
[2] Shin, J. H., Im, J. S., and Atwater, H. A., in Phase Formation and modification by Beam-Solid Interactions, edited by Was, G. S., Follstaedt, D. M., and Rehn, L. E., Mat. Res. Soc. Symp. Proc. 235, 21 (1992).Google Scholar
[3] Shin, J. H. and Atwater, H. A., Phys. Rev. B 48 5964 (1993).Google Scholar
[4] Bartholomeusz, B. J., Kopalidis, P. M., and Stinson, D. G., J. Appl. Phys. 71 4595 (1992).Google Scholar
[5] Roorda, S., Sinke, W. C., Poate, J. M., Jacobson, D. C., Dierker, S., Dennis, B. S., Eaglesham, D. J., Spaepen, F., and Fuoss, P., Phys. Rev. B 44 3702 1991).Google Scholar
[6] Coffa, S., Poate, J. M., Jacobson, D. C., Frank, W., and Gustin, W., Phys. Rev. B 45, 15 8355 (1992)Google Scholar
[7] Coffa, S., Priolo, F., and Battaglia, A., Phys. Rev. Lett. 70 3756 (1993).Google Scholar
[8] Volkert, C. A., J. Appl. Phys. 70, 3521 (1991).Google Scholar
[9] Stoik, P.A., Calcagnile, L., Roorda, S., Sinke, W. C., Berntsen, A. J. M., Appl. Phys. Lett. 60 1688 (1992).Google Scholar
[10] Park, B. and Spaepen, F., J. Appl. Phys. 68 4556 (1990).Google Scholar
[11] Shin, J. H. and Atwater, H. A., in Phase Transformations in Thin Films-Thermodynamics and Kinetics edited by Atzmon, M., Greer, A., Harper, J., and Libera, M., Mat. Res. Soc. Symp. Proc. 311. Mat. Res. Soc. Symp. Proc. 311 (accepted for publication).Google Scholar
[12] Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergammon, New York, 1985); Copyright J. F. Ziegler, 1991.Google Scholar
[13] G. N Vandehoven, Liang, A. N., Niesen, L., and Custer, J. S., Phys. Rev. Lett. 68 3714 (1992).Google Scholar
[14] Shin, J. H. and Atwater, H. A.; Nucl. Inst. Meth. B 80 973 (1993).Google Scholar