Published online by Cambridge University Press: 15 February 2011
Low frequency noise measurements are a powerful tool for detecting deep traps in semiconductor devices and investigating trapping-recombination mechanisms. We have performed low frequency noise measurements on a number of photoconducting detectors fabricated on autodoped n-GaN films grown by ECR-MBE. At room temperature, the noise spectrum is dominated by 1/f noise and thermal noise for low resistivity material and by generation-recombination (G-R) noise for high resistivity material. Noise characteristics were measured as a function of temperature in the 80K to 300K range. At temperatures below 150K, 1/f noise is dominant and at temperatures above 150K, G-R noise is dominant. Optical excitation revealed the presence of traps not observed in the dark, at room temperature.