Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T10:07:52.833Z Has data issue: false hasContentIssue false

Giant 1/f Noise in Low-Tc CMR Manganites: Evidence of the Percolation Threshold

Published online by Cambridge University Press:  10 February 2011

V. Podzorov
Affiliation:
Serin Physics Laboratory, Rutgers University, Piscataway, NJ 08854-8019
M. Uehara
Affiliation:
Serin Physics Laboratory, Rutgers University, Piscataway, NJ 08854-8019
M. E. Gershenson
Affiliation:
Serin Physics Laboratory, Rutgers University, Piscataway, NJ 08854-8019
T. Y. Koo
Affiliation:
Bell Labs, Lucent Technologies, Murray Hill, NJ 07974
S-W. Cheong
Affiliation:
Serin Physics Laboratory, Rutgers University, Piscataway, NJ 08854-8019 Bell Labs, Lucent Technologies, Murray Hill, NJ 07974
Get access

Abstract

We observed a dramatic peak in the 1/f noise at the metal-insulator transition (MIT) in low-Tc, manganites. This many-orders-of-magnitude noise enhancement is observed for both polycrystalline and single-crystal samples of La5/8−y. Pry, Ca3/8MnO3 (y = 0.35 – 0.4) and Pr1−xCaxMnO3 (x = 0.35 – 0.5). This observation strongly suggests that the microscopic phase separation in the low-Tc, manganites causes formation of a percolation network, and that the observed MIT is a percolation threshold. It is shown that the scale of phase separation in polycrystalline samples is much smaller than that in single crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Imada, M., Fujimori, A., and Tokura, Y., Rev. Mod. Phys. 70, 1039 (1998).Google Scholar
[2] Uehara, M., Kim, K. H., and Cheong, S-W., unpublished.Google Scholar
[3] Helmholt, R. M. von et al. , Phys. Rev. Lett. 71, 2331 (1993).Google Scholar
[4] Jin, S. et al. , Science 264, 413 (1994).Google Scholar
[5] Nagaev, E. L., Sov. Phys.-Uspekhi, 39, 781 (1996).Google Scholar
[6] Cheong, S-W. and Hwang, H. Y., in Colossal Magnetoresistance Oxides, edited by Tokura, Y. (Gordon & Breach, London, 1999), ch. 7.Google Scholar
[7] Babushkina, N. A. et al. , Phys. Rev. B 59, 6994 (1999).Google Scholar
[8] Uehara, M., Mori, S., Chen, C. H., and Cheong, S-W., Nature (London) 399, 560 (1999).Google Scholar
[9] Millis, A. J., Littlewood, P. B., and Shraiman, B. I., Phys. Rev. Lett. 74, 5144 (1995).Google Scholar
[10] Röder, H., Zang, Jun, and Bishop, A. R., Phys. Rev. Lett. 76, 1356 (1996).Google Scholar
[11] Zhou, J.-S. and Goodenough, J. B., Phys. Rev. Lett. 80, 2665 (1998).Google Scholar
[12] Teresa, J. M. De et al. , Nature 386, 256 (1997).Google Scholar
[13] Rammal, R. et al. , Phys. Rev. Lett. 54, 1718 (1985).Google Scholar
[14] Kogan, Sh., Electronic Noise and Fluctuations in Solids, Cambridge University Press 1998.Google Scholar
[15] Tremblay, A.-M. S., Feng, S., and Breton, P., Phys. Rev. B. 33, 2077 (1986).Google Scholar
[16] Merithew, R. D., Weissman, M. B., O'Donnel, J., and Eckstein, J. “Mesoscopic Fluctuations in Collosal Magnetoresistance”, preprint, 1999.Google Scholar
[17] Rudman, D. A., Calabrese, J. J., and Garland, J. J., Phys. Rev. B 33, 1456 (1986).Google Scholar
[18] Chen, C. C. and Chou, Y. C., Phys. Rev. Lett. 54, 2529 (1985).Google Scholar
[19] The Pr concentration for the single crystal, estimated from the Tc ,(y) dependence, was close to 0.35 (the nominal concentration was y = 0.42).Google Scholar