Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T03:58:10.381Z Has data issue: false hasContentIssue false

GOx LbL Based Film Growth over Porous Alumina (PA) Followed by Diffuse Reflectance Spectroscopy

Published online by Cambridge University Press:  04 August 2015

Letícia M. M. Ferro
Affiliation:
Federal University of São Carlos, Department of Physics, Chemistry and Mathematics, UFSCar, Campus of Sorocaba, Sorocaba 18052-780, SP, Brazil.
Marystela Ferreira
Affiliation:
Federal University of São Carlos, Department of Physics, Chemistry and Mathematics, UFSCar, Campus of Sorocaba, Sorocaba 18052-780, SP, Brazil.
Francisco Trivinho-Strixino
Affiliation:
Federal University of São Carlos, Department of Physics, Chemistry and Mathematics, UFSCar, Campus of Sorocaba, Sorocaba 18052-780, SP, Brazil.
Get access

Abstract

In this study, the growth of LbL film of polyallylamine hydrochloride (PAH), polyvinyl sulfonic acid (PVS) and glucose oxidase (GOx) in porous anodic alumina substrate (PAA) was accompanied by total reflectance technique. The PAA substrate was synthesized with aluminum anodisation and sample morphology was characterized by scanning electron microscopy (SEM).

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Thompson, G. E., Thin Solid Films 297 (1–2), 192201 (1997).CrossRefGoogle Scholar
Sulka, G. D., in Nanostructured Materials in Electrochemistry (Wiley-VCH Verlag GmbH & Co. KGaA, 2008), pp. 1116.Google Scholar
Santos, A., Macías, G., Ferré-Borrull, J., Pallarès, J. and Marsal, L. F., ACS Appl. Mater. Interfaces 4 (7), 35843588 (2012).CrossRefGoogle Scholar
Siqueira, J. R., Gasparotto, L. H. S., Crespilho, F. N., Carvalho, A. J. F., Zucolotto, V. and Oliveira, O. N., J. Phy. Chem. B 110 (45), 2269022694 (2006).CrossRefGoogle Scholar
Shu, J. H., Wikle, H. C. and Chin, B. A., IEEE Sens. J 11 (1), 5661 (2011).CrossRefGoogle Scholar
Brumbach, M., Placencia, D. and Armstrong, N. R., J. Phy. Chem. C 112 (8), 31423151 (2008).CrossRefGoogle Scholar
Georgiades, S. N., Abd Karim, N. H., Suntharalingam, K. and Vilar, R., Angew. Chem., Int. Ed. 49 (24), 40204034 (2010).CrossRefGoogle Scholar
Paterno, L. G., Mattoso, L. H. C. and Oliveira, O. N. d. Jr., Quim. Nova 24, 228235 (2001).10.1590/S0100-40422001000200013CrossRefGoogle Scholar
Trivinho-Strixino, F., Pereira, E. C. and Lopes, L. R. C., Quim. Nova 27, 661663 (2004).CrossRefGoogle Scholar
Deshmukh, P. K., Ramani, K. P., Singh, S. S., Tekade, A. R., Chatap, V. K., Patil, G. B. and Bari, S. B., J. of Controlled Release 166 (3), 294306 (2013).CrossRefGoogle Scholar
Reilly, R. S., Smyth, C. A., Rakovich, Y. P. and McCabe, E. M., Nanotechnology 20 (9), 095707 (2009).CrossRefGoogle Scholar
Zaraska, L., Kurowska, E., Sulka, G., Senyk, I. and Jaskula, M., J. Solid State Electrochem. 18 (2), 361368 (2014).10.1007/s10008-013-2215-zCrossRefGoogle Scholar
Zoldák, A. Z. G., Musatov, A, Stupák, M., Sedlák, E., J. Biol. Chem. 279 (2004).CrossRefGoogle Scholar
Petri L., F. M., Moraes, M. L., J. Nanosci. Nanotechnol. 11 (2011).CrossRefGoogle Scholar
Lazzara, T. D., Lau, K. H. A., Knoll, W., Janshoff, A. and Steinem, C., Beilstein J. Nanotechnol. 3, 475484 (2012).CrossRefGoogle Scholar