Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T01:17:53.095Z Has data issue: false hasContentIssue false

Grain Growth in Polycrystalline Thin Films

Published online by Cambridge University Press:  15 February 2011

Carl V. Thompson*
Affiliation:
Dept. of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

The performance and reliability of polycrystalline films are strongly affected by the average grain size and the distribution of grain sizes and orientations. These are often controlled through grain growth phenomena which occur during film formation and during subsequent processing. Abnormal rather than normal grain growth is most common in thin films, and leads to an evolution in the distribution of grain orientations as well as grain sizes, often leading to uniform or restricted crystallographic orientations or textures. Surface and interface energy minimization and strain energy minimization can lead to development of different textures, depending on which is dominant. The final texture resulting from grain growth depends on the film thickness, the deposition temperature, the grain growth temperature, the thermal expansion coefficients of the film and substrate, and the mechanical properties of the film, as well as other factors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Frost, H.J. and Thompson, C.V., Acta Metall. 35, 529 (1987).CrossRefGoogle Scholar
2. Frost, H.J. and Thompson, C.V., J. Elec. Mat. 17, 447 (1988).CrossRefGoogle Scholar
3. Johnson, W.A. and Mehl, R.F., Trans. Am. Inst. Min. Engrs. 135, 416 (1939).Google Scholar
4. Gilbert, E.N., Ann. Math. Stat. 33, 958 (1962).Google Scholar
5. Mouchan, B.A. and Demichisin, A.V., Fiz. Met. 28, 83 (1969).Google Scholar
6. Thornton, J.A., Annu. Rev. Mater. Sci. 7, 239 (1977).CrossRefGoogle Scholar
7. Srolovitz, D.J., J. Vac. Sci. Technol. A4, 2925 (1986).Google Scholar
8. Grovenor, C.R.M., Hentzell, H.T.G., and Smith, D.A., Acta Metall. 32, 773 (1984).Google Scholar
9. Smith, D.A. and Ibrahim, A., MRS Symp. Proc. 317,401 (1994).CrossRefGoogle Scholar
10. Kinsbron, E., Sternheim, M., and Knoell, R., Appl. Phys. Lett. 42, 836 (1983).Google Scholar
11. Wong, C.C., Smith, H.I., and Thompson, C.V., Appl. Phys. Letts. 48, 335 (1986).CrossRefGoogle Scholar
12. Tu, K.N., Smith, D.A., and Weiss, B.Z., Phys. Rev. 836, 8948 (1987).Google Scholar
13. Smith, D.A., Tu, K.N., and Weiss, B.Z., Ultramicroscopy 30, 90 (1989).Google Scholar
14. Ma, E., Thompson, C.V., and Clevenger, L.A., J. Appl. Phys. 69, 2211 (1991).Google Scholar
15. Coffey, K.R., Clevenger, L.A., Barmak, K., Rudman, D.A., and Thompson, C.V., Appl. Phys. Lett. 55, 852 (1989).Google Scholar
16. Atkinson, H.V., Acta Metall. 36, 469 (1969).CrossRefGoogle Scholar
17. Thompson, C.V., Ann. Rev. Mat. Sci. 20, 245 (1990).Google Scholar
18. Thompson, C.V., J. Appl. Phys. 58, 763 (1985).Google Scholar
19. Hillert, M., Acta Metall. 13, 227 (1965).Google Scholar
20. Louat, N.P., Acta Metall. 22, 721 (1974).CrossRefGoogle Scholar
21. Hunderi, O. and Ryum, N., J. Mater. Sci. 15, 1104 (1980).Google Scholar
22. Wu, P.K., MRS Symp. Proc. 317, 559 (1994).CrossRefGoogle Scholar
23. Mullins, W.W., J. Appl. Phys. 27, 900 (1956).CrossRefGoogle Scholar
24. von Neumann, J., “Metal Interfaces, ASM, Cleveland, Ohio, p. 108 (1952).Google Scholar
25. Lifshitz, I.M. and Slyozov, V.V., J. Phys. Chem. Solids 19, 35 (1961).Google Scholar
26. Wagner, C., Z. Eleklrochem. 65, 581 (1961).Google Scholar
27. Anderson, M.P., Srolovitz, D.J., Grest, G.S., and Sahm, P.S., Acta Metall. 32, 783 (1984).CrossRefGoogle Scholar
28. Srolovitz, D.J., Anderson, M.P., Sahni, P.S., and Grest, G.S., Acta Metall. 32, 793 (1984).CrossRefGoogle Scholar
29. Srolovitz, D.J., Grest, G.S., and Anderson, M.P., Acta Metall. 33, 2233 (1986).Google Scholar
30. Frost, H.J., Thompson, C.V., Howe, C.L., and Whang, J., Scripta Metall. 22, 65 (1988).Google Scholar
31. Frost, H.J., Thompson, C.V., and Walton, D.L., Acta Met. et Mat. 38, 1455 (1990).Google Scholar
32. Frost, H.J., Thompson, C.V., and Walton, D.L., Acta Met. et Mat. 40, 779 (1992).Google Scholar
33. Walton, D T., Frost, H.J., and Thompson, C.V., Appl. Phys. Letts. 61, 40 (1992).Google Scholar
34. Carel, R., Thompson, C.V., and Frost, H.J., “Computer Simulation of Strain Energy and Surface- and Interface-Energy on Grain Growth in Thin Films,” MRS Symp. Proc, Spring 1994, forthcoming.Google Scholar
35. Thompson, C.V., Flora, J., and Smith, H.I., J. Appl. Phys. 67, 4099 (1990).Google Scholar
36. Thompson, C.V., Ada Metall. 36, 2929 (1988).Google Scholar
37. Floro, J.A. and Thompson, C.V., Acta Met. et Mat. 41, 1137 (1993).Google Scholar
38. Floro, J.A. and Thompson, C.V., “Mean Field Analysis of Abnormal Grain Growth Driven by Interface-Energy Anisotropy,” MRS Symp. Proc, Spring 1994, forthcoming.Google Scholar
39. Beck, P.A., Holtzworth, ML., and Sperry, P.R., Trans. Am. Inst. Min (Metall.) Eng. 180, 163 (1949).Google Scholar
40. Mullins, W.W., Acta Metall. 6, 414 (1958).Google Scholar
41. Palmer, J.E., Thompson, C.V., and Smith, H.I., J. Appl. Phys. 62, 2492 (1987).Google Scholar
42. Tracy, B.M., Davies, P.W., Fanger, D., and Gartman, P., “Microstructural Science for Thin Film Metallizations in Electronics Applications,” ed. by Sanchez, J., Smith, D.A., and DeLanerolle, N. (TMS, 1988), p. 157 Google Scholar
43. Kim, H.-J. and Thompson, C.V., J Appl. Phys. 67, 757 (1990).Google Scholar
44. Nix, W.D., Met. Trans. 20A, 2217 (1989).CrossRefGoogle Scholar
45. Thompson, C.V., Scripta Met. et Mai. 28, 167 (1993).Google Scholar
46. Thompson, C.V., Floro, J.A., and Carel, R., Modelling of Coarsening and Grain Growth (The Metallurgical Society: Warrendale, PA), 205, 1993.Google Scholar
47. Floro, J.A., Carel, R., and Thompson, C.V., MRS Symp. Proc. 317, 419 (1994).Google Scholar
48. Floro, J.A., Thompson, C.V., Carel, R., and Bristowe, P.D., “The Competition Between Strain and Interface Energy During Epitaxial Grain Growth in Ag Films on Ni (100),” J. Mat. Res., in press.Google Scholar
49. Chaudhari, P., IBM J. Res. Develop. 197 (1969).Google Scholar
50. Sanchez, J.E. Jr. and Arzt, E., Scripta Metall. Mater. 27, 285 (1992).Google Scholar
51. Thompson, C.V., J. Mat. Res. 8, 237 (1993).CrossRefGoogle Scholar
52. Venkatraman, R. and Bravman, J.C., J. Mater. Res. 7, 2040 (1992).Google Scholar
53. Carel, R., Thompson, C.V., and Frost, H.J., unpublished research.Google Scholar
54. Longworth, H. and Thompson, C.V., J. Appl. Phys. 69, 3929 (1991).Google Scholar
55. Hayashi, Y., Frost, H.J., Thompson, C.V., and Walton, D.T., MRS Sym. Proc. 317, 431 (1994).Google Scholar