Article contents
Grain Nucleation and Grain Growth During Crystallization of HWCVD a-Si:H Films
Published online by Cambridge University Press: 01 February 2011
Abstract
Hydrogenated amorphous silicon (a-Si:H) films of high and low hydrogen content were deposited directly on molybdenum, carbon-coated TEM grids by hot-wire chemical vapor deposition. The material was annealed at 600°C and 630°C for variable times to achieve various degrees of crystallinity. The films thickness of 100-nm allowed characterization by TEM without additional thinning. The grain growth in such thin films is nearly two-dimensional, allowing clear identification of crystalline and amorphous regions. Thus, the crystalline volume fraction can be tracked by simple image-processing methods. The evolution of crystallization by grain nucleation and growth for these films is accurately described by classical phase-change kinetics. Analysis of the randomly distributed grains at early stages of crystallization also provides the average areal grain number density and grain size. From the image analysis, we determine the grain nucleation rate and the grain growth velocity. The final grain size is then estimated by extrapolation to the fully crystallized state, assuming the kinetic parameters remain constant after the onset of crystallization.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2006
References
- 5
- Cited by