No CrossRef data available.
Published online by Cambridge University Press: 18 March 2011
A microstructural change during the formation reaction of aluminum titanate from a mixture of rutile and corundum powders has been studied. The characterization was carried out using a polarization microscope, a scanning electron microscope and a micro-focus X-ray diffractometer. The formation of aluminum titanate was controlled by a nucleation step. The formation reaction proceeded to form spherically oriented regions of aluminum titanate grains among the matrix of rutile and corundum. At the end of the reaction, the specimen was entirely filled with the oriented region of consisting several hundred micrometers. The oriented region was composed of primary aluminum titanate grains of several micrometers and pores. Large cracks due to a thermal expansion anisotropy were formed at the boundaries of the orientated regions. The formation of the oriented region was caused by a small change in free energy, increasing elastic energy, and the endothermic nature of the reaction.