Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T06:46:46.234Z Has data issue: false hasContentIssue false

“Graphene-Like” Exfoliation of Quasi-2D Crystals of Titanium Ditelluride: A New Route to Charge Density Wave Materials

Published online by Cambridge University Press:  30 August 2011

Javed M. Khan
Affiliation:
Nano-Device Laboratory, Department of Electrical Engineering and Material Science and Engineering Program, Bourns College of Engineering, University of California – Riverside, California 92521, USA
Desalegne Teweldebrhan
Affiliation:
Nano-Device Laboratory, Department of Electrical Engineering and Material Science and Engineering Program, Bourns College of Engineering, University of California – Riverside, California 92521, USA
Craig M. Nolen
Affiliation:
Nano-Device Laboratory, Department of Electrical Engineering and Material Science and Engineering Program, Bourns College of Engineering, University of California – Riverside, California 92521, USA
Alexander. A. Balandin
Affiliation:
Nano-Device Laboratory, Department of Electrical Engineering and Material Science and Engineering Program, Bourns College of Engineering, University of California – Riverside, California 92521, USA
Get access

Abstract

We used a “graphene-like” mechanical exfoliation to obtain atomically thin films of TiTe2. The building blocks of titanium ditelluride are atomic tri-layers separated by the van der Waals gaps. The exfoliation procedure allows one to obtain the few-atom-thick films with strong confinement of charge carriers and phonons. We have verified the crystallinity of the exfoliated films and fabricated the back-gated field-effect devices. The current – voltage characteristics of the TiTe2 devices revealed strong non-linearity, which suggests the charge-density wave effects. The obtained results are important for the proposed application of TiTe2 for the charge-density wave devices and thermoelectric energy conversion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Geim, A. K., and Novoselov, K. S., Nature Materials, 6, 183 (2007).Google Scholar
2. Geim, A. K., Science 324, 1530 (2009).Google Scholar
3. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C., Nano Lett. 8, 902 (2008).Google Scholar
4. Ghosh, S., Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E. P., Nika, D. L., Balandin, A. A., Bao, W., Miao, F., and Lau, C. N., Appl. Phys. Lett., 92, 151911 (2008)., Appl. Phys. Lett., 92, 151911(2008) Google Scholar
5. Teweldebrhan, D., Goyal, V., Rahman, M., and Balandin, A. A., Appl. Phys. Lett., 96, 053107 (2010).Google Scholar
6. Teweldebrhan, D., Goyal, V., and Balandin, A. A., Nano Lett. 9, 12 (2009).Google Scholar
7. Shahil, K. M. F., Hossain, M. Z., Teweldebrhan, D., and Balandin, A. A., Appl. Phys. Lett., 96, 153103 (2010).Google Scholar
8. Clerc, F., Battaglia, C., Bovet, M., Despont, L., Monney, C., Cercellier, H., Garnier, M., and Aebi, P., Physical Review B, 74, 155114, (2006)Google Scholar
9. Wilson, J. A., Di, F. J.; and Mahajan, S., Advances in Physics, 50: 8, 1171-1248, (2001)Google Scholar
10. Cercellier, H., Monney, C., Clerc, F., Battaglia, C., Despont, L., Garnier, M. G., Beck, H., and Aebi, P., Phys. Rev. Lett. 99, 146403 (2007)Google Scholar
11. Thorne, R. E., Physics Today, (1996)Google Scholar
12. van der Zant, H. S. J., Markovic, N, Slot, E, Quantum dot and wells, mesocopic networks, (2001)Google Scholar
13. Zhao, J. F., Ou, H.W., Wu, G., Xie, B.P., Zhang, Y., Shen, D. W., Wei, J., Yang, L. X., Dong, J. K., Arita, M., Namatame, H., Taniguchi, M., Chen, X. H., and Feng, D. L.., arXiv:cond-mat/0612091v3, (2008)Google Scholar
14. Zhao, J. F., Ou, H.W., Wu, G., Xie, B.P., Zhang, Y., Shen, D. W., Wei, J., Yang, L. X., Dong, J. K., Arita, M., Namatame, H., Taniguchi, M., Chen, X. H., and Feng, D. L.., arXiv:cond-mat/0612091v3, (2008)Google Scholar
15. Postnikov, A. V., Com. Mat. Sci., (2003)Google Scholar
16. Patel, S. N., and Balchin, A. A., J. Mat. Sci. Lett., 4, (1985)Google Scholar
17. Cingolani, A., Lugara, M., and Scamarcio, G., Sol. St. Com., 62, (1987)Google Scholar
18. Lucovsky, G., and White, R. M., Phy Rev B, 8, (1973)Google Scholar
19. Khan, J., Nolen, C., Teweldebrhan, D., Balandin, A., ECS Trans, 33 (2010)Google Scholar
20. Clerc, F., Battaglia, C., Bovet, M., Despont, L., Monney, C., Cercellier, H., Garnier, M., and Aebi, P., Physical Review B, 74, 155114, (2006)Google Scholar
21. Ong, N P, Maki, K, Phys. Rev. B 32 6582 (1985)Google Scholar
22. Itkis, ME, Emerling, B M, Brill, JW, Phys. Rev. B 52, R11545 (1995)Google Scholar