No CrossRef data available.
Published online by Cambridge University Press: 19 August 2014
Metal nanoparticle–decorated graphene oxides are promising materials for use in various optoelectronic applications because of their unique plasmonic properties. In this paper, a simple, environmentally friendly method for the synthesis of gold nanoparticle–decorated graphene oxide that can be used to improve the efficiency of organic photovoltaic devices (OPVs) is reported. Here, the amino acid glycine is empolyed as an environmentally friendly reducing reagent for the reduction of gold ions in the graphene oxide solutions. Furthermore, these nanocomposites are empolyed as the anode buffer layer in OPVs to trigger surface plasmonic resonance, which improved the efficiency of the OPVs. The results indicate that such nanomaterials appear to have great potential for application in OPVs.