Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T10:06:59.975Z Has data issue: false hasContentIssue false

Green synthesis of gold nanoparticle–decorated graphene oxides that enhance the photocurrent in polymer solar cells

Published online by Cambridge University Press:  19 August 2014

Ming-Kai Chuang
Affiliation:
Department of Photonics and Institute of Display,Department of Applied Chemistry,National Chiao Tung University, Hsinchu 30013, Taiwan
Fang-Chung Chen*
Affiliation:
Department of Photonics and Institute of Display,Department of Applied Chemistry,National Chiao Tung University, Hsinchu 30013, Taiwan
Chain-Shu Hsu
Affiliation:
Department of Applied Chemistry,National Chiao Tung University, Hsinchu 30013, Taiwan
Get access

Abstract

Metal nanoparticle–decorated graphene oxides are promising materials for use in various optoelectronic applications because of their unique plasmonic properties. In this paper, a simple, environmentally friendly method for the synthesis of gold nanoparticle–decorated graphene oxide that can be used to improve the efficiency of organic photovoltaic devices (OPVs) is reported. Here, the amino acid glycine is empolyed as an environmentally friendly reducing reagent for the reduction of gold ions in the graphene oxide solutions. Furthermore, these nanocomposites are empolyed as the anode buffer layer in OPVs to trigger surface plasmonic resonance, which improved the efficiency of the OPVs. The results indicate that such nanomaterials appear to have great potential for application in OPVs.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dennler, G., Scharber, M. C., Brabec, C. J., Adv. Mater. 21 (2009) 13231338.CrossRefGoogle Scholar
Li, G., Zhu, R., Yang, Y., Nat. Photonics 6 (2012) 153161.CrossRefGoogle Scholar
Li, S. S., Tu, K. H., Lin, C. C., Chen, C. W., Chhowalla, M., ACS Nano 4 (2010) 31693174.CrossRefGoogle Scholar
Yun, J. M., Yeo, J. S., Kim, J., Jeong, H. G., Kim, D. Y., Noh, Y. J., Kim, S. S., Ku, B. Ch., Na, S. I., Adv. Mater. 23 (2011) 49234928.CrossRefGoogle Scholar
Bose, S., Kuila, T., Mishra, A. K., Kim, N. H., Lee, J. H., J. Mater. Chem. 22 (2012) 96969703.CrossRefGoogle Scholar
Zhu, C., Guo, S., Fang, Y., Dong, S., ACS Nano 4 (2010) 24292437.CrossRefGoogle Scholar
Esfandiar, A., Akhavan, O., Irajizad, A., J. Mater. Chem. 21 (2011) 1090710914.CrossRefGoogle Scholar
Chuang, M. K., Lin, S. W., Chen, F. C., Chu, C. W., Hsu, C. S., Nanoscale 6 (2014) 15731579.CrossRefGoogle Scholar
Wu, J. L., Chen, F. C., Chuang, M. K., Tan, K. S., Energy Environ. Sci. 4 (2011) 33743378.CrossRefGoogle Scholar
Zhang, Z., Chen, H., Xing, C., Guo, M., Xu, F., Wang, X., Gruber, H. J., Zhang, B., Tang, J., Nano Res. 4 (2011) 599611.CrossRefGoogle Scholar
Gao, J., Liu, F., Liu, Y., Ma, N., Wang, Z., Zhang, X., Chem. Mat. 22 (2010) 2213-2218.CrossRefGoogle Scholar
Atwater, H. A., Polman, A., Nat. Mater. 9(2010) 205213.CrossRefGoogle Scholar
Luo, Z., Lu, Y., Somers, L. A., Johnson, A. T. C., J. Am. Chem. Soc. 131 (2009) 898899.CrossRefGoogle Scholar
Ferrari, A. C., Robertson, J., Phys. Rev. B, 61 (2000) 1409514107.CrossRefGoogle Scholar