Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-04T04:44:34.015Z Has data issue: false hasContentIssue false

Ground State Searches in Fcc Intermetallics

Published online by Cambridge University Press:  25 February 2011

C. Wolverton
Affiliation:
Dept. of Physics, Univ. of California, Berkeley, CA 94720 and Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
G. Ceder
Affiliation:
Dept. of Materials Science, Masachusettes Institute of Technology, Cambridge, MA 02139
D. De Fontaine
Affiliation:
Dept. of Materials Science and Mineral Engineering, Univ. of California, Berkeley, CA 94720 and Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
H. Dreyssé
Affiliation:
Laboratoire de Physique du Solide, Université de Nancy, Vandoeuvre les Nancy, France
Get access

Abstract

A cluster expansion is used to predict the fcc groutnd states, i.e., the stable phases at zero Kelvin as a function of composition, for alloy systems. TFile internetallic structures are not assumed, but derived rigorously by minimizing the configurational energy subject to linear constraints. This ground state search includes pair and multiplet interactions which spatially extend to fourth nearest neighbor. A large number of these concentration-independent interactions are computed by the method of direct configurational averaging using a linearizedmuffin- tin orbital Hamiltonian cast into tight binding form (TB-LMTO). The interactions, derived without the use of any adjustable or experimentally obtained parameters, are compared to those calculated via the generalized perturbation method extention of the coherent potential approximation within the context of a KKR Hamiltonian (KKR-CPA-GPM). Agreement with the KKR-CPA-GPM results is quite excellent, as is the comparison of the ground state results with the fcc-based portions of the experimentally-determined phase diagrams under consideration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sanchez, J. M., Ducastelle, F., and Gratias, D., Physica 128A, 334 (1984).CrossRefGoogle Scholar
2. Asta, M., Wolverton, C., Fontaine, D. de, and Dreyssé, H., Phys. Rev. B (in press).Google Scholar
3. Wolverton, C., Asta, M., Dreyssé, H., and Fontaine, D. de, Phys. Rev. B (in press).Google Scholar
4. Ferreira, L. G., Wei, S.-H., and Zunger, A., Phys. Rev. B, 40, 3197 (1989).Google Scholar
5. Connolly, J. W. D., and Williams, A. R., Phys. Rev. B 27, 5169 (1983).Google Scholar
6. Dreyssé, H., Berera, A., Wille, L. T., and Fontaine, D. de, Phys. Rev. B 39, 2442 (1989).Google Scholar
7. Sanchez, J. M. and Fontaine, D. de in Structure anmd Bonding in Crystals, Vol. 11, Academic Press, p. 117 (1981).Google Scholar
8. Allen, S. M. and Calm, J. W., Acta Met., 20, 423 (1972).Google Scholar
9. Kanamori, J. and Kakehashi, Y., Journal de Physique, 38, C7, 274 (1977)Google Scholar
10. Lu, Z. W., Wei, S.-H., Zunger, A., and Ferreira, L. G., Solid State Commn. 78, N7, 583 (1991).Google Scholar
11. Ducastelle, F. and Gautier, F., J. Phis. F 6, 2039 (1976).CrossRefGoogle Scholar
12. Turchi, P., Stocks, G., Butler, W., Nicholson, D., and Gonis, A., Phiys. Rev. B 37, 5982 (1988).Google Scholar
13. Dantzig, G. B., Linear Programming and Extensions (Princeton University Press, Princeton, N.J., 1963).Google Scholar
14. Ducastelle, F. in Proceedings of the NATO Advanced Study Institute, Malceme, Crete, 1987, edited by Gonis, A. and Stocks, G. M..Google Scholar
15. Sluiter, M., Ph.D. thesis, University of California at Berkeley, 1988 (unpublished).Google Scholar
16. Andersen, O. K., Jepsen, O., and Sob, M., Electronic Band Strucuture and Its Applications, Vol. 283 and Lecture Notes in Physics, edited by Yussouf, M. (Springer, Berlin, 1987).Google Scholar
17. Shiba, H., Prog. Theor. Pliys. 46, 77 (1971).CrossRefGoogle Scholar
18. Fontaimne, D. de, in Solid State Physics, edited by Ehrenreich, H., Seitz, F., and Turnbull, D. (Academic, New York, 1980), Vol. 35, p. 1.Google Scholar
19. Solal, F., Caudron, R., Ducastelle, F., Finel, A., and Loiseau, A., Phys. Rev. Lett. 58, 2245 (1987).Google Scholar
20. Smith, J. F., J. Alloy Phase Diagrams, 4, P1 (1988).Google Scholar
21. Maldonado, C. and Schubert, K. Z. Metallkde. 55, 619 (1964).Google Scholar
22. Turek, P., Kuentzler, R., Bieber, A., and Jesser, R., Solid State Commrmun. 53, 979 (1985).Google Scholar
23. Cheng, J. and Ardell, A. J., J. Less-Comnmnon Met. 141, 45 (1988).Google Scholar
24. Berera, A., Dreyssé, H., Wille, L. T., and Fontaine, D. de, Phiys. Rev. B 39, 2442 (1989).Google Scholar
25. Berera, A., Phys. Rev. B 42, 4311 (1990).Google Scholar