Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T14:21:27.719Z Has data issue: false hasContentIssue false

Growth and Doping of AlAs by Mombe

Published online by Cambridge University Press:  22 February 2011

C. R. Abernathy
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
S. J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
P. W. Wisk
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

A comparison of dimethylethylamine alane (DMEAA) and trimethylamine alane (TMAA) as aluminum sources and CBr4 and CC14 as carbon doping sources for deposition of AlAs by metalorganic molecular beam epitaxy (MOMBE) has been carried out. DMEAA was found to produce the lowest oxygen levels in AlAs, 5 x 1017 cm-3 VS. 1021 cm-3 for TMAA, even at growth temperatures as low as 500°C. This reduction is likely due to the absence of oxygenated solvents used during synthesis of the DMEAA. Undoped films grown from either source were fully depleted as-grown. Through the use of CBr 4, hole concentrations up to 4.5x1019 cm-3 were achieved in AlAs layers grown fiom DMEAA. Attempts to increase the hole concentration beyond this level resulted in a decrease in the hole concentration even though SIMS analysis showed the carbon concentration to increase with increasing dopant flow. Though the carbon sources did not appear to introduce additional oxygen, they appear to introduce other impurities, such as Cl and Br. Also, due to parasitic etching reactions with the adsorbed halogen, the use of these sources reduces the Al incorporation rate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abernathy, C. R., Jordan, A. S., Pearton, S. J., Hobson, W. S., Bohling, D. A. and T, G., Muhr, Appl. Phys. Lett. 56, 2654 (1990).Google Scholar
2. Abernathy, C. R., Pearton, S. J., Baiocchi, F. A., Ambrose, T., Jordan, A. S., D. A Bohling and Muhr, G. T., J. Crystal Growth 110, 457 (1991).Google Scholar
3. Frese, V., Regel, G. K., Hardtdegen, H., Brauners, A., Balk, P., Hostalek, M., Lokai, N., Pohl, L., Miklis, A. and Werner, K., J. Electr. Mat. 19, 305 (1990).Google Scholar
4. Benchimol, J. L., Zhang, X. Q., Gao, Y., Roux, G. Le, Thibierge, H. and Alexandre, F., J. Crystal Growth 120, 189 (1992).Google Scholar
5. Abernathy, C. R. and Bohling, D. A., J. Crystal Growth 120, 195 (1992).Google Scholar
6. Abernathy, C. R., Wisk, P. W., Jones, A. C. and Rushworth, S. A., Appl. Phys. Lett. 61, 180 (1992).Google Scholar
7. Joyce, T. B., Bullough, T. J., Knightley, P., Kiely, C. J., Xing, Y. R., and Goodhew, P. J., J. Crystal Growth 120, 206 (1992).Google Scholar
8. Putz, N., Veuhoff, E., Heinecke, H., Heyen, M., Luth, H. and Balk, P., J. Vac. Sci. Technol. B2, 671 (1985).Google Scholar
9. Tokumitsu, E., Kudou, Y., Konagai, M. and Takahashi, K., Jpn. J. Appl. Phys. 24, 1189 (1985).Google Scholar
10. Weyers, M., Putz, N., Heinecke, H., Heyen, M., Luth, H. and Balk, P., J. Electron. Mater. 15, 57 (1986).Google Scholar
11. Konagai, M., Yamada, T., Akatsuka, T., Saito, K. and Tokumitsu, E.. J. Crystal Growth 98, 167 (1989)Google Scholar
12. Abernathy, C. R., Pearton, S. J., Ren, F., Hobson, W. S., Fullowan, T. R., Katz, A., Jordan, A. S. and Kovalchick, J., J. Crystal Growth 105, 375 (1990).Google Scholar
13. deLyon, T. J., Buchan, N. I., Kirchner, P. D., Woodall, J. M., McInturff, D. T.; Scilla, G. J. and Cardone, F., J. Crystal Growth 111, 564 (1991).Google Scholar
14. deLyon, T. J., Buchan, N. I., Kirchner, P. D., Woodall, J. M., Scilla, G. J. and Cardone, F., Appl. Phys. Lett. 58, 517 (1991).Google Scholar
15. Abernathy, C. R., Pearton, S. J., Manasreh, M. O., Fischer, D. W. and Talwar, D. N., Appl. Phys. Lett. 57, 294 (1990).Google Scholar
16. Abernathy, C. R., Pearton, S. J., Ren, F., Hobson, W. S. and Wisk, P. W., J. Vac. Sci. Technol, A Jul/Aug, (1994).Google Scholar
17. Davidson, B. R., Newman, R. C., Pritchard, R. E., Robbie, D. A., Sangster, M. J. L., Wagner, J., Fischer, A. and Ploog, K., ICDS-17, 1993.Google Scholar
18. Malik, R., Nottenberg, R. N., Schubert, E. F., Walker, J. F., and Ryan, R. W., Appl. Phys. Lett. 53, 2661 (1988).Google Scholar
19. Brandt, O., Giannini, C., Fischer, A., Ploog, K. H., and Tapfer, L., Inst. Phys. Conf Ser No. 129: Chapter 8, 675 (1992).Google Scholar