Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T07:13:24.785Z Has data issue: false hasContentIssue false

The Growth of AIGaAs/GaAs Heterostructures By Atomic Layer Epitaxy

Published online by Cambridge University Press:  26 February 2011

S. P. Denbaars
Affiliation:
Office of Naval Research Doctoral Fellow
A. Hariz
Affiliation:
University of Southern California, Departments of Electrical Engineering and Materials Science, Los Angeles, CA 90089–0483
C. Beyler
Affiliation:
AT&T Bell Laboratories Scholar
B. Y. Maa
Affiliation:
University of Southern California, Departments of Electrical Engineering and Materials Science, Los Angeles, CA 90089–0483
Q. Chen
Affiliation:
University of Southern California, Departments of Electrical Engineering and Materials Science, Los Angeles, CA 90089–0483
P. D. Dapkus
Affiliation:
University of Southern California, Departments of Electrical Engineering and Materials Science, Los Angeles, CA 90089–0483
Get access

Abstract

The kinetics of atomic layer epitaxy (ALE) of GaAs utilizing trimethylgallium and arsine are described. The results show that saturated monolayer growth can be achieved-in the temperature range 445°C -485°C and that high quality materials can be grown.. Hybrid A1GaAs/GaAs heterostructures have been grown utilizing ALE for the active regions and conventional metalorganic chemical vapor deposition (MOCVD) for the confining regions that yield high quality quantum wells and low threshold quantum well lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pessa, M., Makela, R. and Suntola, R., Appl. Phys. Lett. 38, 131 (1980).Google Scholar
2.Pessa, M., Huttunene, P. and Herman, M. A., J. Appl. Phys. 54, 6047 (1983).Google Scholar
3.Nishizawa, J., Abe, H. and Kurabayashi, T., J. Electrochem. Soc. 132, 1197 (1985).Google Scholar
4.Tischler, M. A. and Bedair, S. M., Appl. Phys. Lett. 48, 1961 (1986).Google Scholar
5.Yoshida, M., Watanabe, H. and Uesugi, F., J. Electrochem. Soc. 137, 677 (1985).Google Scholar
6.DenBaars, S. P., Maa, B. Y., Dapkus, P. D., Danner, A. D. and Lee, H. C., J. Crystal Growth, 77, 188 (1986).Google Scholar
7.Nishizawa, J., Kurabayashi, T., Abe, H. and Nozoe, A., Surface Science, 185, 249(1087)Google Scholar
8DenBaars, S. P., Beyler, C. A., Hariz, A. and Dapkus, P. D., Appl. Phys. Lett., 51, 1530(1987).Google Scholar
9.Bertolet, D. C., Hsu, J. K. and Lau, K. M., J. Appl. Phys., 62,120 (1987).Google Scholar
10Singh, J., Bajajand, K. K.Caudhuri, S., Appl. Phys. Lett. 44, 805(1984)Google Scholar
11.Obale, S. B., Madhukar, A., Voillot, F., Thomsen, M., Tang, W. C., Lee, T. C., Kim, J. Y. and Chen, P., Phys. Rev.B, 36,1662(1987)Google Scholar