Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T10:05:36.749Z Has data issue: false hasContentIssue false

Growth of “colossal” magnetoresistance heterostructures by molecular beam epitaxy

Published online by Cambridge University Press:  10 February 2011

J. O'Donnell
Affiliation:
University of Illinois – Department of Physics, 1110 West Green Street, Urbana, IL 61801
A. E. Andrus
Affiliation:
University of Illinois – Department of Physics, 1110 West Green Street, Urbana, IL 61801
S. Oh
Affiliation:
University of Illinois – Department of Physics, 1110 West Green Street, Urbana, IL 61801
E. Colla
Affiliation:
University of Illinois – Department of Physics, 1110 West Green Street, Urbana, IL 61801
M. Warusawithana
Affiliation:
University of Illinois – Department of Physics, 1110 West Green Street, Urbana, IL 61801
B. A. Davidson
Affiliation:
University of Illinois – Department of Physics, 1110 West Green Street, Urbana, IL 61801
J. N. Eckstein
Affiliation:
University of Illinois – Department of Physics, 1110 West Green Street, Urbana, IL 61801
Get access

Extract

We discuss the heteroepitaxial growth of La1−xSrxMnO3 films and CaTiO3 insulating barriers by molecular beam epitaxy. We find that the surface morphology and residual resistivity of the manganite electrodes is critically dependent on the film stoichiometry. The most important parameter is the concentration of La+Sr (cubic perovskite A-site cations) to that of Mn (B-site cation). If La+Sr is supplied in slight excess, the films grow with atomically flat surfaces, but the residual resistivity at 4.2K is high (as high as 6500 µΩ-cm), and Curie temperature (Tc) low (<300 K). If Mn is supplied in slight excess, the films have high Tc (370 K) and residual resistivity (35 µΩ-cm) better than bulk single crystal values, but the surface is no longer atomically flat. There appears to be a very narrow region of phase space where it is possible to have low resistivity, high Tc films with atomically flat surfaces. This is precisely where one would like to place heterostructure devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 O'Donnell, J., Andrus, A. E., Oh, S., Colla, E., and Eckstein, J. N. (submitted to Appl.Phys. Lett.)Google Scholar
2 Viret, M., Drouet, M., Nassar, J., Contour, J.P., Fermon, C., and Fert, A., Europhys. Lett. 39, 545 (1997).Google Scholar
3 Soulen, R. J. Jr., Osofsky, M. S., Nadgomy, B., Ambrose, T., Broussard, P., Cheng, S. F., Byers, J., Tanaka, C. T., Nowack, J., Moodera, J. S., Laprade, G., Barry, A. and Coey, M. D., Journ. Appl. Phys. 85, 4589 (1999).Google Scholar
4 Zener, C., Phys. Rev. 82, 403 (1951).Google Scholar
5 For a review of the physics of the manganites see Imada, M., Fujimori, A., Tokura, Y., Rev. Mod. Phys. 70, 1309 (1998).Google Scholar
6 Sun, J. Z., Krusin-Elbaum, L., Duncombe, P. R., Gupta, A., and Laibowitz, R. B., Appl. Phys. Lett. 70, 1769 (1997);Google Scholar
Sun, J. Z., Abraham, D. W. Roche, K., and Parkin, S. S. P., Appl. Phys. Lett. 73, 1008 (1998).Google Scholar
7 Obata, T., Manako, T., Shimakawa, Y., and Kubo, Y., Appl. Phys. Lett. 74, 290 (1999).Google Scholar
8 Kwon, C., Jia, Q. X., Fan, Y., Hundley, M. F., and Reagor, D. W., J. Appl. Phys. 83, 7052 (1998);Google Scholar
Kwon, C., Jia, Q. X., Fan, Y., Hundley, M. F., Reagor, D. W., Coulter, J. Y., and Peterson, D. E., Appl. Phys. Lett. 72, 486 (1998).Google Scholar
9 Koller, D., Osofsky, M. S., Chrisey, D. B., Horwitz, J. S., Soulen, R. J. Jr., Stroud, R. M., Eddy, C. R., Kim, J., Auyeung, R. C. Y., Byers, J. M., Woodfield, B. F., Daly, G. M., Clinton, T. W., and Johnson, M., Journ. Appl. Phys. 83 6774 (1998).Google Scholar
10 Stroud, R. M., Kim, J., Eddy, C. R., Chrisey, D. B., Horwitz, J. S., Koller, D., Osofsky, M. S., Soulen, R. J. Jr., Auyeung, R. C. Y., Journ Appl. Phys. 83, 7189 (1998).Google Scholar
11 Eckstein, J. N. and Bozovic, I., Annu. Rev. Mater. Sci. 25, 679 (1995).Google Scholar
12 Roosmalen, J. A. M. Van, Vlaanderen, P. van, Cordfunke, E. H. P., Ijdo, W. L., and IJdo, D. J. W., J. Solid State Chem. 93, 213 (1991).Google Scholar
13 Tofield, B. C. and Scott, W. R., J. Solid State Chem. 10, 183 (1974).Google Scholar
14 Mitchell, J. F., Argyriou, D. N., Potter, C. D., Hinks, D. G., Jorgensen, J. D., and Bader, S. D., Phys. Rev. B 54, 6172 (1996).Google Scholar
15 Urushibara, A. Moritomo, Y. Arima, T. Asamitsu, A. Kido, G. Tokura, Y., Phys. Rev. B 51, 14103 (1995).Google Scholar
16 Altshuler, B., Aronov, G. and Lee, P., Phys. Rev. Lett. 44, 1288, (1980).Google Scholar
17 Stadler, S., Idzerda, Y. U., Chen, Z., Ogale, S. B., and Venkatesan, T., Appl. Phys. Lett. 75, 3384 (1999).Google Scholar