Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T01:05:54.918Z Has data issue: false hasContentIssue false

Growth of Nonpolar (1100) Films and Heterostructures by Plasma-Assisted Molecular Beam Epitaxy

Published online by Cambridge University Press:  01 February 2011

Oliver Brandt
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D-10117 Berlin, Germany
Yue Jun Sun
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D-10117 Berlin, Germany
Klaus H. Ploog
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D-10117 Berlin, Germany
Get access

Abstract

We discuss the growth of M-plane GaN films and (In, Ga)N/GaN multiple quantum well (MQW) structures on LiAlO2(100) substrates by plasma-assisted molecular beam epitaxy. The adsorption and desorption kinetics of Ga on M-plane GaN is studied by reflection high-energy electron diffraction, allowing us to identify the optimum growth conditions with regard to surface morphology. Furthermore, we investigate the compositional profile of M-plane (In, Ga)N/GaN MQWs grown under conditions resulting in comparatively abrupt interfaces. The results demonstrate that significant In surface segregation occurs for the case of M-plane (In, Ga)N. The dependence of the transition energies of the M-plane MQWs on the actual well thickness reveals, however, that the structures are indeed free of electrostatic fields along the growth direction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Waltereit, P., Brandt, O., Trampert, A., Grahn, H. T., Menniger, J., Ramsteiner, M., Reiche, M., and Ploog, K. H., Nature 406, 865 (2000).Google Scholar
[2] Sun, Y. J., Brandt, O., Ramsteiner, M., Grahn, H. T., and Ploog, K. H., Appl. Phys. Lett. 82, 3850 (2003).Google Scholar
[3] Ghosh, S., Brandt, O., Grahn, H. T., and Ploog, K. H., Appl. Phys. Lett. 81, 3380 (2002).Google Scholar
[4] Chen, C. Q., Gaevski, M. E., Sun, W. H., Kuokstis, E., Zhang, J. P., Fareed, R. S. Q., Wang, H. M., Yang, J. W., Simin, G., Khan, M. A., et al., Appl. Phys. Lett. 81, 3194 (2002).Google Scholar
[5] Kuokstis, E., Chen, C. Q., Gaevski, M. E., Sun, W. H., Yang, J. W., Simin, G., Khan, M. A., Maruska, H. P., Hill, D. W., Chou, M. C., et al., Appl. Phys. Lett. 81, 4130 (2002).Google Scholar
[6] Sun, Y. J., Brandt, O., Jahn, U., Liu, T. Y., Trampert, A., Cronenberg, S., Dhar, S., and Ploog, K. H., J. Appl. Phys. 92, 5714 (2002).Google Scholar
[7] Sun, Y. J., Brandt, O., Cronenberg, S., Dhar, S., Grahn, H. T., Ploog, K. H., Waltereit, P., and Speck, J. S., Phys. Rev. B 67, 041306(R) (2003).Google Scholar
[8] Craven, M. D., Lim, S. H., Wu, F., Speck, J. S., and DenBaars, S. P., Appl. Phys. Lett. 81, 469 (2002).Google Scholar
[9] Ng, H. M., Appl. Phys. Lett. 80, 4369 (2002).Google Scholar
[10] Sun, W. H., Yang, J. W., Chen, C. Q., Zhang, J. P., Gaevski, M. E., Kuokstis, E., Adivarahan, V., Wang, H. M., Gong, Z., Su, M., et al., Appl. Phys. Lett. 83, 2599 (2003).Google Scholar
[11] Smith, A. R., Feenstra, R. M., Greve, D. W., Shin, M. S., Skowronski, M., Neugebauer, J., and Northrup, J. E., J. Appl. Phys. 16, 2242 (1998).Google Scholar
[12] Northrup, J. E., Neugebauer, J., Feenstra, R. M., and Smith, A. R., Phys. Rev. B 61, 9932 (2000).Google Scholar
[13] Mula, G., Adelmann, C., Moehl, S., Oullier, J., and Daudin, B., Phys. Rev. B 64, 195406 (2001).Google Scholar
[14] Adelmann, C., Brault, J., Jalabert, D., Gentile, P., Mariette, H., Mula, G., and Daudin, B., J. Appl. Phys. 91, 9638 (2002).Google Scholar
[15] Adelmann, C., Brault, J., Mula, G., Daudin, B., Lymperakis, L., and Neugebauer, J., Phys. Rev. B 67, 165419 (2003).Google Scholar
[16] Waltereit, P., Brandt, O., Ramsteiner, M., Trampert, A., Grahn, H. T., Menniger, J., Reiche, M., Uecker, R., Reiche, P., and Ploog, K. H., Phys. Status Solidi A 180, 133 (2000).Google Scholar
[17] Lee, C. D., Feenstra, R. M., Northrup, J. E., Lymperakis, L., and Neugebauer, J., Appl. Phys. Lett. 74, 1793 (2003).Google Scholar
[18] Brandt, O., Waltereit, P., Dhar, S., Jahn, U., Sun, Y. J., Trampert, A., Ploog, K. H., Tagliente, M. A., and Tapfer, L., J. Vac. Sci. Tech. B 20, 1626 (2002).Google Scholar
[19] Waltereit, P., Brandt, O., Ploog, K. H., Tagliente, M. A., and Tapfer, L., Phys. Rev. B 66, 165322 (2002).Google Scholar
[20] Sun, Y. J., Brandt, O., and Ploog, K. H., J. Vac. Sci. Tech. B 21, 1350 (2003).Google Scholar
[21] SAFIRE by VTS Schwarz GmbH, Hindenburgstrasse 12, D-76332 Bad Herrenalb, Germany.Google Scholar
[22] Brandt, O., Sun, Y. J., and Ploog, K. H., Phys. Rev. B 69, 165326 (2004).Google Scholar
[23] Kreuzer, H. J., in Chemistry and Physics of Solid Surfaces VII, edited by Vanselow, R. and Howe, R. F. (Springer, Berlin-Heidelberg, 1988), vol. 7, p. 259.Google Scholar
[24] Zinke-Allmang, M., Surf. Sci. Rep. 16, 377 (1992).Google Scholar
[25] Brandt, O., Waltereit, P., and Ploog, K. H., J. Phys. D 35, 577 (2002).Google Scholar
[26] Williamson, G. K. and Hall, W. H., Acta Metall. 1, 22 (1953).Google Scholar
[27] Brandt, O., Sun, Y. J., Schönherr, H.-P., Ploog, K. H., Waltereit, P., Lim, S., and Speck, J. S., Appl. Phys. Lett. 83, 90 (2003).Google Scholar
[28] Wu, J., Walukiewicz, W., Yu, K. M., Ager, J. W. III, Haller, E. E., Lu, H., and Schaff, W. J., Appl. Phys. Lett. 80, 4741 (2002).Google Scholar
[29] Mayrock, O., Wünsche, H.-J., and Henneberger, F., Phys. Rev. B 62, 16870 (2000).Google Scholar
[30] Fiorentini, V., Bernardini, F., and Ambacher, O., Appl. Phys. Lett. 80, 1204 (2002).Google Scholar
[31] Mayrock, O., unpublished.Google Scholar