Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T01:07:03.050Z Has data issue: false hasContentIssue false

Growth of SiOx Nanowires on Self-Assembled Hexagonal Au Particle Networks

Published online by Cambridge University Press:  21 March 2011

Tian Fu Chiang
Affiliation:
Department of Material Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, R. O. C.
Shao Liang Cheng
Affiliation:
Department of Chemical and Materials Engineering, National Central University, Chung-Li City, Taiwan, R.O.C.
Lih Juann Chen
Affiliation:
Department of Material Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, R. O. C.
Get access

Abstract

Self-assembled hexagonal networks with discrete Au particles on Al2O3 (00.1) and Si (111) have been synthesized. SiOx nanowires were grown on individual Au particles using a vapor transport deposition process. The growth of SiOx nanowires was found to cover completely the surface of Au particles on Al2O3 (00.1). On the other hand, the SiOx nanowires were grown selectively on Au particles on Si (111). Interaction of Au and Si substrate is invoked to explain the difference.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dekker, C., Phys. Today 52(2), 22 (1999).Google Scholar
2. Zhang, Y., Ichihashi, T., Landree, E., Nihey, F., Iijima, S., Science 285, 1719 (1999).Google Scholar
3. Hu, J., Odom, T. W., Lieber, C. M., Acc. Chem. Res. 32, 435 (1999).Google Scholar
4. Cui, Y., Lieber, C. M., Science 291, 851 (2001).Google Scholar
5. Huang, Y., Duan, X., Cui, Y., Lauhon, L. J., Kim, K. H., Lieber, C. M., Science 294, 1313 (2001).Google Scholar
6. Han, W., Fan, S., Li, Q., Hu, Y., Science 277, 1287 (1997).Google Scholar
7. Park, W. I., Yi, G. C., Kim, M. Y., Pennycook, S. J., Adv. Mater. 15, 526 (2003).Google Scholar
8. Yu, D. P., Hang, Q. L., Ding, Y., Zhang, H. Z., Bai, Z. G., Wang, J. J., Zou, Y. H., Qian, W., Xiong, G. C., Feng, S. Q., Appl. Phys. Lett. 73, 3076 (1998).Google Scholar
9. Wu, Z. H., Mei, X. Y., Kim, D., Blumin, M., Ruda, H. E., Appl. Phys. Lett. 81, 5177 (2002).Google Scholar
10. Ohlsson, B. J., Bjork, M. T., Magnusson, M. H., Deppert, K., Samuelson, L., Wallenberg, L. R., Appl. Phys. Lett. 79, 3335 (2001).Google Scholar
11. Mårtensson, T., Borgström, M., Seifert, W., Ohlsson, B. J., Samuelson, L., Nanotechnology 14, 1255 (2003).Google Scholar
12. Whitesides, G. M., Grzybowski, B., Science 295, 2418 (2002).Google Scholar
13. Haynes, C. L., Duyne, R. P. Van, J. Phys. Chem. B 105, 5599 (2001).Google Scholar
14. Su, P.Y., Hu, J.C., Cheng, S.L., Chen, L.J., Liang, J.M., Appl. Phys. Lett. 84, 3840(2004).Google Scholar
15. Wu, J. J., Wong, T. C., Yu, C. C., Adv. Mater. 14, 1643 (2002).Google Scholar
16. Chen, Y. J., Li, J. B., Dai, J. J., Chem. Phys. Lett. 344, 450 (2001).Google Scholar
17. Meng, G. W., Peng, X. S., Wang, Y. W., Wang, C. Z., Wang, X. F., Wang, L. D., Appl. Phys. A 76, 119 (2003).Google Scholar