No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Hardness measurements in ion implanted polymers are complicated by the fact that the hardness of the material varies as a function of depth within the modified layer. This effect is induced by the distribution of deposited energy, which produces a depth-dependent variation in microstructure. We have used the depth-sensing nano-indentation technique to investigate the mechanical properties of thin films of ion-beam modified aromatic polymers deposited onto silicon substrates. The depth of the ion-modified surface layer was determined using the load variation technique from the hardness and elastic module depth profile and the depth dependence of the power law coefficient of the unloading curve.