Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T00:42:57.543Z Has data issue: false hasContentIssue false

Heat and Mass Transport Induced by Collision Cascades

Published online by Cambridge University Press:  15 February 2011

A. Carol
Affiliation:
Centro Atómico Bariloche, 8400 Bariloche,Argentine
M. Alurralde
Affiliation:
Centro Atómico Constituyentes, Libertador 8250, 1429 Buenos Aires, Argentina
R. Saliba
Affiliation:
Centro Atómico Bariloche, 8400 Bariloche,Argentine
M. Caro
Affiliation:
Centro Atómico Bariloche, 8400 Bariloche,Argentine
Get access

Abstract

Irradiation of materials with energetic particles produces changes in the microstructure that affect mechanical properties. In previous work we studied the thermal aspects of the quenching of collision cascades that involve nanoscale phase transitions between the solid and the liquid states of the target. In this work we present a rigorous treatment of these phenomena, including a detailed description of the Stefan problem in three dimensions and diffusion in thermal gradients. This approach is oriented to give a quantitative description of the influence of the primary knockon spectrum on the microstructure short after the quenching of the heat spike.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Caro, M., Ardelea, A., and Caro, A.. J. Mater. Res 5, 2657 (1990).Google Scholar
2. alurralde, M., Caro, A., and Victoria, M.. J. Nucl. Mater. 183, 33 (1991).Google Scholar
3. alurralde, M., Caro, A., and Victoria, M.. J. Mater. Res. 8, 449 (1993).Google Scholar
4. Robinson, M. T. and Torrens, I, M.. Phys. Rev. B 9, 5008 (1974)Google Scholar
5. van Swygenhoven, H. and Caro, A.. Phys. Rev. Lett. 70, 2098 (1993).Google Scholar
6. Nochetto, R.N. and Verdi, C.. SIAM T. 25, 784 (1988). R. N. Nochetto. In ‘Advances in Numerical Analysis; Oxford Univ. Press (1991). R. N. Nochetto, M. Paolini and C. Verdi. Math. Of Comp. 57, 73, (1991). R. N. Nochetto, M. Paolini, and C. Verdi. SLAM J. 12, 1207 (1991).Google Scholar
7. Basombrio, F.. In ‘Mec´nica Computacional XVI’, Asoc. Arg. De Mec. Comp., Argentina (1996).Google Scholar
8. Strang, and Fix, . Prentice-Hall, Englewood Cliffs (1973).Google Scholar
9. Onsager, L.. Phys. Rev. 37, 404 (1931). L. Onsager. Phys. Rev. 38, 2265 (1931)Google Scholar
10. Kubo, R., Yokota, M., and Nakajima, S.. J. Phys. Soc. Jpn. 12, 1203 (1957)Google Scholar
11. Protopapas, P., Andersen, H. C., and Parlee, N. A. D.. J. Chem. Phys. 59, 15 (1973).Google Scholar
12. Sawatzxy, A. and Jaunot, F. E.. J. Metals, N. Y. 9 (1957).Google Scholar
13. Daw, M. S. and Baskes, M. I.. Phys. Rev. Lett. 50, 1285 (1983).Google Scholar
14. Foiles, S., Baskes, M. and Daw, M. S.. Phys. Rev. B 33, 7983 (1986).Google Scholar
15. Foiles, S. M. and Daw, M. S.. J. Mater. Res. 2, 5 (1987).Google Scholar