Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T06:44:55.377Z Has data issue: false hasContentIssue false

Heavy Ion Irradiation of Zirconate Pyrochlores

Published online by Cambridge University Press:  21 March 2011

J. Lian
Affiliation:
Dept. of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2014, U. S. A.
L. M. Wang
Affiliation:
Dept. of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2014, U. S. A.
J. Chen
Affiliation:
Dept. of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2014, U. S. A.
R. C. Ewing
Affiliation:
Dept. of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2014, U. S. A.
K. V. G. Kutty
Affiliation:
Materials Chemistry Division, Indira Gandhi Center for Atomic Research, Kalpakkam, 603 102, India.
Get access

Abstract

Zirconate pyrochlores, A2Zr2O7, are important potential nuclear waste forms for Puimmobilization. The binary Gd2(Ti2-xZrx)O7 has been shown to have increasing resistance to ionirradiation damage with the increasing Zr content, and Gd2Zr2O7 is radiation resistant to a 1 MeV Kr+ ion irradiation at 25 K to a dose of 5 dpa. In this study, a 1.5 MeV Xe+ irradiation was completed for zirconate pyrochlores A2Zr2O7 (A=La, Nd, Sm, Gd). The radiation resistance decreases with an increase of the ionic radius of A-site cation. La2Zr2O7 is the first zirconate pyrochlore to be amorphized by ion beam irradiation, and the critical amorphization temperature, Tc, is ∼310 K. The susceptibility of La2Zr2O7 to ion beam damage is related to its structure, which shows the largest deviation from the ideal fluorite structure. These results are also consistent with calculations of the cation antisite formation energy in the pyrochlore structure. The ion irradiation-induced pyrochlore-to-fluorite transformation occurred in all of the irradiated zirconate pyrochlore phases. Based on the results for Gd2Ti2-xZrxO7 and A2Zr2O7, the defect fluorite structures are stable when the ionic radii ratio rA/rB≤1.54; beyond this limit, the defect fluorite structure becomes increasingly unstable relative to the amorphous state.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W. and Major, A., Nature 278, 219 (1979).Google Scholar
2. Weber, W. J. and Ewing, R. C., Science 289, 2051 (2000).Google Scholar
3. Raison, P. E., Haire, R. G., Sato, T. and Ogawa, T., Mat. Res. Soc. Symp. Proc. 556, 3 (1999).Google Scholar
4. Lumpkin, G. R. and Ewing, R. C., Phys. Chem. Minerals 16, 2 (1988).Google Scholar
5. Wang, S. X., Wang, L. M., Ewing, R. C., Was, G. S. and Lumpkin, G. R., Nucl. Instr. Meth. B 148, 704 (1999).Google Scholar
6. Weber, W. J., Wald, J. W. and Matzke, Hj., Mater. Lett. 3, 173 (1985).Google Scholar
7. Wang, S. X.et al., J. Mater. Res. 14, 4470 (1999).Google Scholar
8. Minervini, L., Grimes, R. W. and Sickafus, K. E., J. Am. Ceram. Soc. 83, 1873 (2000).Google Scholar
9. Williford, R. E., Weber, W. J., Devanathan, R. and Gale, J. D., J. Electroceram. 3, 409 (1999).Google Scholar
10. Charties, A., Meis, C., Weber, W. J. and Corrales, L. R., submitted to Phys. Rev. B, (2001).Google Scholar
11. Weber, W. J., Nucl. Instr. Meth. B 166, 98 (2000).Google Scholar
12. Wang, S. X., Wang, L. M. and Ewing, R. C., Phys. Rev. B 63, 4105 (2000).Google Scholar
13. Wang, S. X., Wang, L. M. and Ewing, R. C., Mater. Res. Soc. Symp. Proc. 504, 165 (1998).Google Scholar
14. Shannon, R. D., Acta. Crystallogr. A 32, 751 (1976).Google Scholar
15. Subramanian, M. A., Aravamudan, G. and Rao, G. V. S., Prog. Solid State Chem. 15, 55 (1983).Google Scholar
16. Sickafus, K. E.et al., J. Nucl. Mater. 274, 66 (1999).Google Scholar
17. Sickafus, K. E.et al., Science 289, 748 (2000).Google Scholar
18. Begg, B. D., Hess, N. J., McCready, D. E., Thevuthasan, S. and Weber, W. J., J. Nucl. Mater. 289, 188 (2001).Google Scholar