Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T06:55:21.408Z Has data issue: false hasContentIssue false

Heterojunction Bipolar Transistors (HBT) with a-Si:H or μc-Si Emitter

Published online by Cambridge University Press:  26 February 2011

J. Symonsj
Affiliation:
Interuniversity Micro-Electronics Center, Kapeldreef 75, 3030 Leuven, Belgium
J. Nijs
Affiliation:
Interuniversity Micro-Electronics Center, Kapeldreef 75, 3030 Leuven, Belgium
J. Vanhellemontk
Affiliation:
Interuniversity Micro-Electronics Center, Kapeldreef 75, 3030 Leuven, Belgium
K. Baerth
Affiliation:
Interuniversity Micro-Electronics Center, Kapeldreef 75, 3030 Leuven, Belgium
H. Michielg
Affiliation:
Interuniversity Micro-Electronics Center, Kapeldreef 75, 3030 Leuven, Belgium
G. Willekew
Affiliation:
Interuniversity Micro-Electronics Center, Kapeldreef 75, 3030 Leuven, Belgium
W. Vandervors
Affiliation:
Interuniversity Micro-Electronics Center, Kapeldreef 75, 3030 Leuven, Belgium
R. Mertens
Affiliation:
Interuniversity Micro-Electronics Center, Kapeldreef 75, 3030 Leuven, Belgium
Get access

Abstract

In this paper phosphorous doped amorphous and microcrystalline silicon are used as emitter material for npn bipolar transistors. A heterojunction is formed between emitter and base, resulting in a higher current gain β for the same base parameters in comparison with conventional transistors. Because the amorphous silicon results in a too high emitterresistance, a compromise solution is microcrystalline silicon (μc-Si). HREM-micrographs give credit to the true heterojunction concept and show epitaxial reorganization, especially after annealing of the amorphous silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Graul, J., Glasl, A. and Murrman, H., IEEE J.Solid State Circuits,SC–11,491 (1976)Google Scholar
2. De Graaff, H. and De Groot, J., IEEE Trans. on El. Dev. 26,1771 (1979)Google Scholar
3. Ning, T. and Isaac, R., IEEE Trans. on El. Dev. 27,2051 (1980)Google Scholar
4. Oh-uchi, N., Hayashi, H., Yamoto, H., T. Matsushita,IEDM Technical Digest 1984 Google Scholar
5. Yablonovitch, E., Gmitter, T., IEEE EDL-6, 597 (1985)Google Scholar
6. Crabbé, E., Swirhun, S., Del Alamo, J., Pease, R. and Swanson, R., IEDM Techn.Digest 1986, 28 (1986)Google Scholar
7. Benna, B., Meister, T. and Schaber, H.,US-Belgium Joint seminar on “New developments in the physics of homo- and heterojunctions”,Leuven,Belgium (1986)Google Scholar
8. Patton, G., Bravman, J. and Plummer, J., IEEE Trans. on El.Dev. 33,1754 (1986)Google Scholar
9. Wolstenholme, G., Jorgensen, N., Ashburn, P. and Booker, G., J.Appl.Phys. 61,225 (1986)Google Scholar
10. Swanson, R. and Kwark, Y., US-Belgium Joint seminar on “New developments in the Physics of homo- and heterojunctions”,Leuven,Belgium (1986)Google Scholar
11. Ghannam, M., Nijs, J., De Keersmaecker, R. and Mertens, R., IEDM Techn.Digest 1984 Google Scholar
12. Symons, J., Ghannam, M., Nijs, J., Van Ammel, A., De Schepper, P., Neugroschel, A. and Mertens, R., Appl.Phys.A 41,291 (1986)Google Scholar
13. Nishida, S., Shiimoto, T, Yamada, A, Karasawa, S., Konagai, M. and Takahashi, K., Appl.Phys.Lett.49(2),79 (1986)Google Scholar
14. Getreu, J., Modeling the bipolar transistor (Tektronix Inc. 1976),p.140 Google Scholar
15. Michiel, H., internal report Imec (1985)Google Scholar
16. De Pauw, P., Ph.D. dissertation, K.U. Leuven, Belgium (1984)Google Scholar
17. Yamamoto, H., Ishiwara, H. and Furukawa, S., Appl.Phys.Lett. 46(3), 268 (1985)Google Scholar
18. Vanhellemont, J. and Claeys, C., submitted to J.Appl.Phys.Google Scholar