Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-29T05:05:28.077Z Has data issue: false hasContentIssue false

Hexagonal Boron Nitride Nanowalls Synthesized by Unbalanced RF Magnetron Sputtering

Published online by Cambridge University Press:  14 March 2011

Boumédiène BenMoussa
Affiliation:
Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium
Jan D’Haen
Affiliation:
Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium IMEC vzw, Division IMOMEC, Diepenbeek, Belgium
Christian Borschel
Affiliation:
Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Jena, Germany
Marc Saitner
Affiliation:
Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium
Ali Soltani
Affiliation:
Institut d’Electronique de Microélectronique et de Nanotechnologie, Villeneuve d’Ascq, France
Vincent Mortet
Affiliation:
Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium IMEC vzw, Division IMOMEC, Diepenbeek, Belgium
Carsten Ronning
Affiliation:
Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Jena, Germany
Marc D’Olieslaeger
Affiliation:
Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium IMEC vzw, Division IMOMEC, Diepenbeek, Belgium
Hans-Gerd Boyen
Affiliation:
Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium
Ken Haenen
Affiliation:
Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium IMEC vzw, Division IMOMEC, Diepenbeek, Belgium
Get access

Abstract

A recurrent problem in the synthesis of hexagonal boron nitride (h-BN) is contamination with oxygen and carbon, leading to possible detrimental effects on optical and electronic properties. Here it is shown that the addition of H2 to the N2/Ar mixture used during the deposition process, clearly suppresses the incorporation of these elements, reducing their combined level below 5 %. The surface morphology, assessed with scanning electron microscopy (SEM), revealed the presence of h-BN nanowalls, i.e. vertically positioned 2D structures consisting out of several h-BN sheets. While Fourier transform infrared (FTIR) spectroscopy revealed the sp2 nature of the bonds, confirming the hexagonal nature of the nanowalls, the quasi-perfect stoichiometry of the material was evidenced by combining energy dispersive X-ray analysis (EDX) and Rutherford backscattering spectroscopy (RBS). The dimensions and density of these walls are clearly film thickness dependent and cross-sectional TEM images confirmed the increasing level of porosity with film thickness. A dense layer of material is present at the substrate-film interface, which gradually evolves into the 2D nanowall structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Watanabe, K., Taniguchi, T. and Kanda, H., Nat. Mater. 3 (6), 404409 (2004).Google Scholar
2. Remes, Z., Nesládek, M., Haenen, K., Watanabe, K. and Taniguchi, T., phys. stat. sol. (a) 202 (11), 22292233 (2005).Google Scholar
3. Watanabe, K., Taniguchi, T., Niiyama, T., Miya, K. and Taniguchi, M., Nat. Photonics 3 (10), 591594 (2009).Google Scholar
4. Ouyang, T., Chen, Y., Xie, Y., Yang, K., Bao, Zh. and Zhong, J., Nanotechnology 21, 245701 (2010).Google Scholar
5. Pauli, T. K., Bhattacharya, P. and Bose, D. N., Appl. Phys. Lett. 56, 2648, (1990)Google Scholar
6. Li, C., Bando, Y., Zhi, C. Y., Huang, Y. and Golberg, D., Nanotechnology 20, 385707 (2009).Google Scholar
7. Wu, Y. H., Qiao, P. W., Chong, T. C. and Shen, Z.X., Adv. Mater. 14, 64 (2002).Google Scholar
8. Kubota, Y., Watanabe, K., Tsuda, O. and Taniguchi, T., Science 317, 932934 (2007).Google Scholar
9. Osaka, Y., Chayahara, A., Yokohama, H., Okamoto, M., Hamada, T., Imura, T. and Fujisawa, M., in Synthesis and Properties of Boron Nitride, edited by Pouch, J. J. and Alteroviz, S. A., Materials Science Forum 54-55 (Trans Tech Publications Inc, Aedermannsdorf, Switzerland, 1990), pp. 277294.Google Scholar
10. Dean, C. R., Young, A. F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K. L. and Hone, J., Nature Nanotech. 5, 722726 (2010).Google Scholar
11. Andujar, J. L., Bertran, E. and Maniette, Y. J., Appl. Phys. 80, 65536555 (1996).Google Scholar
12. Huang, J. L., Pan, C. H. and Lii, D. F., Surf. Coat. Technol. 122, 166175 (1999).Google Scholar
13. Choi, B.J., Mater. Res. Bull. 34, 22152220 (1999).Google Scholar
14. El-Yadouni, A., Soltani, A., Boudrioua, A., Thevenin, P., Bath, A. and Loulergue, J. C., Opt. Mater. 17, 319322 (2001).Google Scholar
15. Hiramatsu, M., Shiji, K., Amano, H. and Hori, M., Appl. Phys. Lett. 84, 47084710 (2004).Google Scholar
16. Teii, K., Shimada, S., Nakashima, M. and Chuang, A.T.H., J. Appl. Phys. 106, 084303 (2009).Google Scholar
17. Yu, J., Qin, L., Hao, Y., Kuang, S., Bai, X., Chong, Y.-M., Zhang, W. and Wang, E., ACS Nano 4 (1), 414422 (2010).Google Scholar
18. Paine, R. T. and Narula, C. K., Chem. Rev. 90, 7391 (1990).Google Scholar
19. Geick, R., Perry, C. H. and Rupprecht, G., Phys. Rev. 146, 543547 (1966).Google Scholar
20. Borowiak-Palen, E., Pichler, T., Fuentes, G. G., Bendjemil, B., Liu, X., Graff, A., Behr, G., Kalenczuk, R.J., Knupfer, M. and Fink, J., Chem. Commun. 1, 8283 (2003).Google Scholar
21. Chen, Z. G., Zou, J., Liu, G., Li, F., Wang, Y., Wang, L. Z., Yuan, X. L., Sekiguchi, T., Cheng, H. M. and Lu, G. Q., ACS Nano 2, 21832191 (2008).Google Scholar
22. Rinzler, A. G., Hafner, J. H., Nikolaev, P., Lou, L., Kim, S. G., Tomanek, D., Nordlander, P., Cobert, D. T. and Smalley, R.E., Science 269, 1550 (1995).Google Scholar
23. Zhi, C. Y., Bando, Y., Tang, C.C., Golberg, D., Xie, R. G. and Sekigushi, T., Appl.Phys. Lett. 86, 213110 (2005).Google Scholar
24. Kobayashi, K., Tanimura, M., Nakai, H., Yoshimura, A., Yoshimura, H., Kojima, K. and Tachibana, M., J. Appl. Phys. 101, 094306 (2007).Google Scholar