Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T07:10:26.204Z Has data issue: false hasContentIssue false

Hexagonal-arranged ZnO Nanowire Arrays by Using Au Nanohole Membranes as Fabrication Template

Published online by Cambridge University Press:  01 February 2011

H. J. Fan
Affiliation:
Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
W. Lee
Affiliation:
Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
K. Nielsch
Affiliation:
Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
M. Zacharias
Affiliation:
Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
A. Dadgar
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University, postbox 2410, 39016 Magdeburg, Germany
A. Krost
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University, postbox 2410, 39016 Magdeburg, Germany
Get access

Abstract

A new template method for large-scale fabrication of hexagonally patterned and vertically aligned ZnO nanowires is demonstrated. The process involves a novel type of metal membrane, a gold catalyst template produced using the membrane as deposition mask, and the catalyst-guided growth of ZnO nanowires. The metal membranes, composed of hexagonal nanohole arrays, are electrochemically replicated from ordered porous alumina. The ZnO nanowires obtained have a uniform alignment perpendicular to the GaN surface and a distribution according to the pattern defined by the nanohole membrane. Such periodically arranged ZnO nanowires have potential applications as sensor arrays and piezoelectric transducers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H., Adv. Mater. 15, 353 (2003).Google Scholar
2. Wagner, R. S., Ellis., W. C. Trans. Metal. Soc. AIME 233, 1053 (1965).Google Scholar
3. Yang, P., Yan, H., Mao, S., Russo, R., Johnson, J., Saykally, R., Morris, N., Pham, J., He, R., Choi, H. J., Adv. Funct. Mater. 12, 323 (2002).Google Scholar
4. Wang, X., Summers, C. J., Wang, Z. L., Nano Lett. 4, 423 (2004).Google Scholar
5. Fan, H. J., Fleischer, F., Lee, W., Nielsch, K., Scholz, R., Zacharias, M., Gösele, U., Dadgar, A., Krost, A., Superlattices and Microstructures (2004) in press.Google Scholar
6. Martensson, T., Borgstrom, M., Seifert, W., Ohlsson, B. J., Samuelson, L., Nanotechnology 14, 1255 (2003).Google Scholar
7. Martensson, T., Carlberg, P., Borgstrom, M., Montelius, L., Seifert, W., Samuelson, L., Nano Lett. 4, 699 (2004).Google Scholar
8. Greyson, E. C., Babayan, Y., Odom, T. W., Adv. Mater. 16, 1348 (2004).Google Scholar
9. Ng, H. T., Han, J., Yamada, T., Nguyen, P., Chen, Y. P., Meyyappan, M., Nano Lett. 4, 1247 (2004).Google Scholar
10. Park, W. I., Yi, G.-C., Adv. Mater. 16, 87 (2004).Google Scholar
11. Choi, J., Chilling, J., Nielsch, K., Hillebrand, R., Reiche, M., Wehrspohn, R. B., Gösele, U., Mat. Res. Soc. Symp. Proc. 722, L5.2.1 (2002).Google Scholar
12. Lee, W., Fan, H. J., Zacharias, M., Nielsch, K., Gösele, U., submittedGoogle Scholar
13. Dadgar, A., Strittmatter, A., Bläsing, J., Poschenrieder, M., Contreras, O., Veit, P., Riemann, T., Bertram, F., Reiher, A., Krtschil, A., Diez, A., Hempel, T., Finger, T., Kasic, A., Schubert, M., Bimberg, D., Ponce, F. A., Christen, J., Krost, A., Phys. Stat. Sol. (c) 0, 1583 (2003).Google Scholar
14. Dadgar, A., Oleynik, N., Forster, D., Deiter, S., Witek, H., Bläsing, J., Bertram, F., Krtschil, A., Diez, A., Christen, J., Krost, A., J. Cryst. Growth 267, 140 (2004).Google Scholar